The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A015577 a(n+1) = 8*a(n) + 9*a(n-1), a(0) = 0, a(1) = 1. 9
 0, 1, 8, 73, 656, 5905, 53144, 478297, 4304672, 38742049, 348678440, 3138105961, 28242953648, 254186582833, 2287679245496, 20589113209465, 185302018885184, 1667718169966657, 15009463529699912, 135085171767299209, 1215766545905692880, 10941898913151235921 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Binomial transform is A011557, with a leading zero. - Paul Barry, Jul 09 2003 Number of walks of length n between any two distinct nodes of the complete graph K_10. Example: a(2) = 8 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHIJ are: ACB, ADB, AEB, AFB, AGB, AHB, AIB and AJB. - Emeric Deutsch, Apr 01 2004 The ratio a(n+1)/a(n) converges to 9 as n approaches infinity. - Felix P. Muga II, Mar 09 2014 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Jean-Paul Allouche, Jeffrey Shallit, Zhixiong Wen, Wen Wu, Jiemeng Zhang, Sum-free sets generated by the period-k-folding sequences and some Sturmian sequences, arXiv:1911.01687 [math.CO], 2019. Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5. Index entries for linear recurrences with constant coefficients, signature (8,9). FORMULA From Paul Barry, Jul 09 2003: (Start) G.f.: x/((1+x)*(1-9*x)). E.g.f. exp(4*x)*sinh(5*x)/5. a(n) = (9^n - (-1)^n)/10. (End) a(n) = 9^(n-1)-a(n-1). - Emeric Deutsch, Apr 01 2004 a(n) = round(9^n/10). - Mircea Merca, Dec 28 2010 MAPLE seq(round(9^n/10), n=0..25); # Mircea Merca, Dec 28 2010 MATHEMATICA k=0; lst={k}; Do[k=9^n-k; AppendTo[lst, k], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *) Table[(9^n - (-1)^n)/10, {n, 0, 30}] (* or *) LinearRecurrence[{8, 9}, {0, 1}, 30] (* G. C. Greubel, Jan 06 2018 *) PROG (PARI) A015577_vec(N=20)=Vec(O(x^N)+1/(1-8*x-9*x^2), -N-1) \\ M. F. Hasler, Jun 14 2008, edited Oct 25 2019 (PARI) for(n=0, 30, print1((9^n - (-1)^n)/10, ", ")) \\ G. C. Greubel, Jan 06 2018 (PARI) apply( {A015577(n)=9^n\/10}, [0..25]) \\ M. F. Hasler, Oct 25 2019 (Sage) [lucas_number1(n, 8, -9) for n in range(0, 19)] # Zerinvary Lajos, Apr 25 2009 (MAGMA) [Round(9^n/10): n in [0..30]]; // Vincenzo Librandi, Jun 24 2011 (Maxima) a[0]:0\$ a[n]:=9^(n-1)-a[n-1]\$ A015577(n):=a[n]\$ makelist(A015577(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */ CROSSREFS Cf. A001045, A078008, A097073, A115341, A015518, A054878, A015521, A109499, A015531, A109500, A109501, A015552, A093134, A015565. - Vladimir Joseph Stephan Orlovsky, Dec 11 2008 Sequence in context: A241630 A153482 A014991 * A293151 A082764 A254150 Adjacent sequences:  A015574 A015575 A015576 * A015578 A015579 A015580 KEYWORD nonn,easy AUTHOR EXTENSIONS Extended by T. D. Noe, May 23 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 11:28 EST 2020. Contains 338720 sequences. (Running on oeis4.)