This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A015519 a(n) = 2*a(n-1) + 7*a(n-2). 30
 0, 1, 2, 11, 36, 149, 550, 2143, 8136, 31273, 119498, 457907, 1752300, 6709949, 25685998, 98341639, 376485264, 1441362001, 5518120850, 21125775707, 80878397364, 309637224677, 1185423230902, 4538307034543, 17374576685400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n)=a(n-1)+A083100(n-2), n>1. A083100(n)/a(n+1) converges to sqrt(8). - Mario Catalani (mario.catalani(AT)unito.it), Apr 23 2003 The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the denominators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 8 times the bottom to get the new top. The limit of the sequence of fractions is sqrt(8). - Cino Hilliard, Sep 25 2005 Pisano period lengths: 1, 2, 8, 4, 24, 8, 3, 8, 24, 24, 15, 8, 168, 6, 24, 16, 16, 24, 120, 24, ... . - R. J. Mathar, Aug 10 2012 REFERENCES John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,7). FORMULA G.f.: x/ ( 1-2*x-7*x^2 ); a(n) = ((1+2*sqrt(2))^n-(1-2*sqrt(2))^n)*sqrt(2)/8. - Paul Barry, Jul 17 2003 E.g.f.: exp(x)*sinh(2*sqrt(2)*x)/(2*sqrt(2)). - Paul Barry, Nov 20 2003 Second binomial transform is A000129(2n)/2 (A001109). - Paul Barry, Apr 21 2004 a(n) = sum(k=0..floor((n-1)/2), comb(n-k-1, k)*(7/2)^k*2^(n-k-1) ). - Paul Barry, Jul 17 2004 a(n) = sum{k=0..n, binomial(n, 2*k+1)*8^k}. - Paul Barry, Sep 29 2004 G.f.: G(0)*x/(2*(1-x)), where G(k)= 1 + 1/(1 - x*(8*k-1)/(x*(8*k+7) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013 MATHEMATICA a[n_]:=(MatrixPower[{{1, 4}, {1, -3}}, n].{{1}, {1}})[[2, 1]]; Table[Abs[a[n]], {n, -1, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *) LinearRecurrence[{2, 7}, {0, 1}, 30] (* Harvey P. Dale, Oct 09 2017 *) PROG (Sage) [lucas_number1(n, 2, -7) for n in range(0, 25)] # Zerinvary Lajos, Apr 22 2009 (MAGMA) [ n eq 1 select 0 else n eq 2 select 1 else 2*Self(n-1)+7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 23 2011 (PARI) a(n)=([0, 1; 7, 2]^n*[0; 1])[1, 1] \\ Charles R Greathouse IV, May 10 2016 CROSSREFS The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519. Sequence in context: A071244 A005583 A176916 * A096977 A084098 A263547 Adjacent sequences:  A015516 A015517 A015518 * A015520 A015521 A015522 KEYWORD nonn,easy,changed AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 00:30 EST 2019. Contains 329988 sequences. (Running on oeis4.)