login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015519 a(n) = 2*a(n-1) + 7*a(n-2). 30
0, 1, 2, 11, 36, 149, 550, 2143, 8136, 31273, 119498, 457907, 1752300, 6709949, 25685998, 98341639, 376485264, 1441362001, 5518120850, 21125775707, 80878397364, 309637224677, 1185423230902, 4538307034543, 17374576685400 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n)=a(n-1)+A083100(n-2), n>1. A083100(n)/a(n+1) converges to sqrt(8). - Mario Catalani (mario.catalani(AT)unito.it), Apr 23 2003

The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the denominators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 8 times the bottom to get the new top. The limit of the sequence of fractions is sqrt(8). - Cino Hilliard, Sep 25 2005

Pisano period lengths: 1, 2, 8, 4, 24, 8, 3, 8, 24, 24, 15, 8, 168, 6, 24, 16, 16, 24, 120, 24, ... . - R. J. Mathar, Aug 10 2012

REFERENCES

John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,7).

FORMULA

G.f.: x/ ( 1-2*x-7*x^2 ); a(n) = ((1+2*sqrt(2))^n-(1-2*sqrt(2))^n)*sqrt(2)/8. - Paul Barry, Jul 17 2003

E.g.f.: exp(x)*sinh(2*sqrt(2)*x)/(2*sqrt(2)). - Paul Barry, Nov 20 2003

Second binomial transform is A000129(2n)/2 (A001109). - Paul Barry, Apr 21 2004

a(n) = sum(k=0..floor((n-1)/2), comb(n-k-1, k)*(7/2)^k*2^(n-k-1) ). - Paul Barry, Jul 17 2004

a(n) = sum{k=0..n, binomial(n, 2*k+1)*8^k}. - Paul Barry, Sep 29 2004

G.f.: G(0)*x/(2*(1-x)), where G(k)= 1 + 1/(1 - x*(8*k-1)/(x*(8*k+7) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013

MATHEMATICA

a[n_]:=(MatrixPower[{{1, 4}, {1, -3}}, n].{{1}, {1}})[[2, 1]]; Table[Abs[a[n]], {n, -1, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)

LinearRecurrence[{2, 7}, {0, 1}, 30] (* Harvey P. Dale, Oct 09 2017 *)

PROG

(Sage) [lucas_number1(n, 2, -7) for n in xrange(0, 25)] # Zerinvary Lajos, Apr 22 2009

(MAGMA) [ n eq 1 select 0 else n eq 2 select 1 else 2*Self(n-1)+7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 23 2011

(PARI) a(n)=([0, 1; 7, 2]^n*[0; 1])[1, 1] \\ Charles R Greathouse IV, May 10 2016

CROSSREFS

The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.

Sequence in context: A071244 A005583 A176916 * A096977 A084098 A263547

Adjacent sequences:  A015516 A015517 A015518 * A015520 A015521 A015522

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 22:28 EDT 2018. Contains 316378 sequences. (Running on oeis4.)