login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015463 q-Fibonacci numbers for q=6. 13
0, 1, 1, 7, 43, 1555, 57283, 12148963, 2684744611, 3403616850979, 4512743621400355, 34305128668265064739, 272902655183139496957219, 12446072589202949254455565603, 594062125322746104949654522449187, 162554939850629908283324416663519980835 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..70

FORMULA

a(n) = a(n-1) + 6^(n-2)*a(n-2).

Associated constant: C_6 = lim_{n->infinity} a(n)*a(n-2)/a(n-1)^2 = 1.046607628427088904183396615... . - Benoit Cloitre, Aug 30 2003

a(n)*a(n+3) - a(n)*a(n+2) - 6*a(n+1)*a(n+2) + 6*a(n+1)^2 = 0. - Emanuele Munarini, Dec 05 2017

MAPLE

q:=6; seq(add((product((1-q^(n-j-1-k))/(1-q^(k+1)), k=0..j-1))*q^(j^2), j = 0..floor((n-1)/2)), n = 0..20); # G. C. Greubel, Dec 16 2019

MATHEMATICA

RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]+6^(n-2) a[n-2]}, a, {n, 20}] (* Harvey P. Dale, Nov 11 2011 *)

F[n_, q_]:= Sum[QBinomial[n-j-1, j, q]*q^(j^2), {j, 0, Floor[(n-1)/2]}];

Table[F[n, 6], {n, 0, 20}] (* G. C. Greubel, Dec 16 2019 *)

PROG

(MAGMA) [0] cat[n le 2 select 1 else Self(n-1) + Self(n-2)*(6^(n-2)): n in [1..20]]; // Vincenzo Librandi, Nov 09 2012

(PARI) q=6; m=20; v=concat([0, 1], vector(m-2)); for(n=3, m, v[n]=v[n-1]+q^(n-3)*v[n-2]); v \\ G. C. Greubel, Dec 16 2019

(Sage)

def F(n, q): return sum( q_binomial(n-j-1, j, q)*q^(j^2) for j in (0..floor((n-1)/2)))

[F(n, 6) for n in (0..20)] # G. C. Greubel, Dec 16 2019

(GAP) q:=6;; a:=[0, 1];; for n in [3..20] do a[n]:=a[n-1]+q^(n-3)*a[n-2]; od; a; # G. C. Greubel, Dec 16 2019

CROSSREFS

q-Fibonacci numbers: A000045 (q=1), A015459 (q=2), A015460 (q=3), A015461 (q=4), A015462 (q=5), this sequence (q=6), A015464 (q=7), A015465 (q=8), A015467 (q=9), A015468 (q=10), A015469 (q=11), A015470 (q=12).

Sequence in context: A023316 A289737 A065786 * A177507 A258182 A048605

Adjacent sequences:  A015460 A015461 A015462 * A015464 A015465 A015466

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 23 13:14 EST 2020. Contains 332159 sequences. (Running on oeis4.)