%I #44 Dec 30 2023 23:40:42
%S 1,1,11,111,1121,11321,114331,1154631,11660641,117761041,1189271051,
%T 12010471551,121293986561,1224950337161,12370797358171,
%U 124932923918871,1261700036546881,12741933289387681,128681032930423691,1299552262593624591,13124203658866669601
%N Generalized Fibonacci numbers.
%C For n>=1, row sums of triangle for numbers 10^k*C(m,k) with duplicated diagonals. - _Vladimir Shevelev_, Apr 13 2012
%C For n>=1, a(n) equals the numbers of words of length n-1 on alphabet {0,1,...,10} containing no subwords ii, (i=0,1,...,9). - _Milan Janjic_, Jan 31 2015
%C a(n) equals the number of sequences over the alphabet {0,1,...,9,10} such that no two consecutive terms have distance 6. - _David Nacin_, Jun 02 2017
%H Vincenzo Librandi, <a href="/A015456/b015456.txt">Table of n, a(n) for n = 0..1000</a>
%H M. Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Janjic/janjic63.html">On Linear Recurrence Equations Arising from Compositions of Positive Integers</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,1).
%F a(n) = 10*a(n-1) + a(n-2).
%F a(n) = Sum_{k=0..n} 9^k*A055830(n,k). - _Philippe Deléham_, Oct 18 2006
%F G.f.: (1-9*x)/(1-10*x-x^2). - _Philippe Deléham_, Nov 20 2008
%F For n>=2, a(n) = F_(n)(10) + F_(n+1)(10), where F_n(x) is Fibonacci polynomial (cf.A049310): F_n(x) = Sum_{i=0,...,floor((n-1)/2)} C(n-i-1,i)*x^(n-2*i-1). - _Vladimir Shevelev_, Apr 13 2012
%t LinearRecurrence[{10, 1}, {1, 1}, 30] (* _Vincenzo Librandi_, Nov 08 2012 *)
%t CoefficientList[Series[(1-9*x)/(1-10*x-x^2), {x, 0, 50}], x] (* _G. C. Greubel_, Dec 19 2017 *)
%o (Magma) [n le 2 select 1 else 10*Self(n-1) + Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Nov 08 2012
%o (PARI) x='x+O('x^30); Vec((1-9*x)/(1-10*x-x^2)) \\ _G. C. Greubel_, Dec 19 2017
%Y Row m=10 of A135597.
%K nonn,easy
%O 0,3
%A _Olivier Gérard_