%I #18 Sep 08 2022 08:44:39
%S 1,-310968905,116041991914472611,-41905685236388916561230885,
%T 15214999201976941569510489219969931,
%U -5519247137793116688209551072778853951561365,2002409531513525089470147425061900304433199288073771
%N Gaussian binomial coefficient [ n,11 ] for q=-6.
%D J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
%D M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
%H Vincenzo Librandi, <a href="/A015410/b015410.txt">Table of n, a(n) for n = 11..120</a>
%F a(n) = Product_{i=1..11} ((-6)^(n-i+1)-1)/((-6)^i-1) (by definition). - _Vincenzo Librandi_, Nov 06 2012
%t Table[QBinomial[n, 11, -6], {n, 11, 20}] (* _Vincenzo Librandi_, Nov 06 2012 *)
%o (Sage) [gaussian_binomial(n,11,-6) for n in range(11,17)] # _Zerinvary Lajos_, May 28 2009
%o (Magma) r:=11; q:=-6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Nov 06 2012
%K sign,easy
%O 11,2
%A _Olivier GĂ©rard_