%I #19 Sep 08 2022 08:44:39
%S 1,-4762874171,24747240402737283733,-127616472670861852065241422635,
%T 658504724872263265466971967899949697493,
%U -3397726086395967282512946130260694347212577518123
%N Gaussian binomial coefficient [ n,9 ] for q=-12.
%D J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
%D M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
%H Vincenzo Librandi, <a href="/A015384/b015384.txt">Table of n, a(n) for n = 9..110</a>
%F a(n) = Product_{i=1..9} ((-12)^(n-i+1)-1)/((-12)^i-1) (by definition). - _Vincenzo Librandi_, Nov 04 2012
%t Table[QBinomial[n, 9, -12],{n, 9, 20}] (* _Vincenzo Librandi_, Nov 04 2012 *)
%o (Magma) r:=9; q:=-12; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Nov 04 2012
%Y Cf. Gaussian binomial coefficients [n, 9] for q = -2..-13: A015371, A015375, A015376, A015377, A015378, A015379, A015380, A015381, A015382, A015383, A015385.
%K sign,easy
%O 9,2
%A _Olivier GĂ©rard_