%I #21 Sep 08 2022 08:44:39
%S 1,-9090909,91827363728191,-917356280909173462809,
%T 9174480257209191175298447191,-91743885133148835462057759420652809,
%U 917439768771348869854580597622587770347191
%N Gaussian binomial coefficient [ n,7 ] for q = -10.
%D J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
%D M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
%H Vincenzo Librandi, <a href="/A015350/b015350.txt">Table of n, a(n) for n = 7..100</a>
%t Table[QBinomial[n,7,-10],{n,7,20}] (* _Harvey P. Dale_, Mar 22 2012 *)
%o (Sage) [gaussian_binomial(n,7,-10) for n in range(7,14)] # _Zerinvary Lajos_, May 27 2009
%o (Magma) r:=7; q:=-10; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..15]]; // _Vincenzo Librandi_, Nov 06 2016
%K sign,easy
%O 7,2
%A _Olivier GĂ©rard_, Dec 11 1999