login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015342 Inverse of 1333rd cyclotomic polynomial. 1

%I

%S 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,

%T 0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,

%U -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0

%N Inverse of 1333rd cyclotomic polynomial.

%C Periodic with period length 1333. - _Ray Chandler_, Apr 07 2017

%H N. J. A. Sloane, <a href="/A015342/b015342.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_1260">Index entries for linear recurrences with constant coefficients</a>, order 1260.

%H <a href="/index/Pol#poly_cyclo_inv">Index to sequences related to inverse of cyclotomic polynomials</a>

%e The series begins 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 + x^18 + x^19 + x^20 + x^21 + x^22 + x^23 + x^24 + x^25 + x^26 + x^27 + x^28 + x^29 + x^30 - 1*x^43 - 1*x^44 - 1*x^45 - 1*x^46 - 1*x^47 - 1*x^48 - 1*x^49 - 1*x^50 - 1*x^51 - 1*x^52 - 1*x^53 - 1*x^54 - 1*x^55 - 1*x^56 - 1*x^57 - 1*x^58 - 1*x^59 - 1*x^60 - 1*x^61 - 1*x^62 - 1*x^63 - 1*x^64 - 1*x^65 - 1*x^66 - 1*x^67 - 1*x^68 - 1*x^69 - 1*x^70 - 1*x^71 - 1*x^72 - 1*x^73 + x^1333 + x^1334 + x^1335 + x^1336 + x^1337 + x^1338 + ...

%e Note the gap after x^73 (which is why the DATA section ends with a string of zeros). - _N. J. A. Sloane_, Dec 12 2015

%p with(numtheory,cyclotomic); c := n->series(1/cyclotomic(n,x),x,80);

%t CoefficientList[Series[1/Cyclotomic[1333,x],{x,0,1450}],x] (* _Harvey P. Dale_, Dec 13 2015 *)

%K sign

%O 0,1

%A _Simon Plouffe_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 21:17 EDT 2019. Contains 323504 sequences. (Running on oeis4.)