%I #22 Dec 07 2019 12:18:18
%S 1,909091,918273728191,917356372736537191,917448117456547208447191,
%T 917438943076290926712489347191,917439860515234003003416059680347191,
%U 917439768771348869854580597622587770347191
%N Gaussian binomial coefficient [ n,6 ] for q = -10.
%D J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
%D M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
%H Vincenzo Librandi, <a href="/A015333/b015333.txt">Table of n, a(n) for n = 6..170</a>
%F G.f.: x^6/((1-x)*(1+10*x)*(1-100*x)*(1+1000*x)*(1-10000*x)*(1+100000*x)*(1-1000000*x)). - _Vincenzo Librandi_, Oct 30 2012
%t Table[QBinomial[n, 6, -10], {n, 6, 20}] (* _Vincenzo Librandi_, Oct 29 2012 *)
%o (Sage) [gaussian_binomial(n,6,-10) for n in range(6,14)] # _Zerinvary Lajos_, May 27 2009
%K nonn,easy
%O 6,2
%A _Olivier GĂ©rard_, Dec 11 1999