%I #19 Dec 07 2019 12:18:18
%S 1,102943,12363454300,1450319733570100,170699761008128301202,
%T 20081461365765141084602686,2362583929682268848603506007900,
%U 277955299234477922983349122651265300
%N Gaussian binomial coefficient [ n,6 ] for q = -7.
%D J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
%D M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
%H Vincenzo Librandi, <a href="/A015330/b015330.txt">Table of n, a(n) for n = 6..200</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (102943, 1766193051, -4228553683893, -1450393913575299, 71272260266184957,488728224518062249, -558545864083284007).
%F G.f.: x^6 / ( (x-1)*(117649*x-1)*(16807*x+1)*(49*x-1)*(343*x+1)*(7*x+1)*(2401*x-1) ). - _R. J. Mathar_, Sep 02 2016
%t Table[QBinomial[n, 6, -7], {n, 6, 20}] (* _Vincenzo Librandi_, Oct 29 2012 *)
%o (Sage) [gaussian_binomial(n,6,-7) for n in range(6,14)] # _Zerinvary Lajos_, May 27 2009
%K nonn,easy
%O 6,2
%A _Olivier GĂ©rard_, Dec 11 1999