%I #19 Dec 07 2019 12:18:18
%S 1,39991,1919128099,89126228045659,4161484248724884235,
%T 194133243948726244454635,9057674762915720387519905195,
%U 422593364163884169440003098013995
%N Gaussian binomial coefficient [ n,6 ] for q = -6.
%D J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
%D M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
%H Vincenzo Librandi, <a href="/A015328/b015328.txt">Table of n, a(n) for n = 6..200</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (39991, 319848018, -412665849288, -89135823446208, 3223331091606528, 18803167718178816, -21936950640377856).
%F G.f.: x^6 /((x-1)*(216*x+1)*(36*x-1)*(7776*x+1)*(1296*x-1)*(6*x+1)*(46656*x-1)). - _R. J. Mathar_, Sep 02 2016
%t Table[QBinomial[n, 6, -6], {n, 6, 20}] (* _Vincenzo Librandi_, Oct 29 2012 *)
%o (Sage) [gaussian_binomial(n,6,-6) for n in range(6,14)] # _Zerinvary Lajos_, May 27 2009
%K nonn,easy
%O 6,2
%A _Olivier GĂ©rard_, Dec 11 1999