login
Gaussian binomial coefficient [ n,6 ] for q = -5.
2

%I #20 Dec 07 2019 12:18:18

%S 1,13021,211929796,3285123767796,51412313316921546,

%T 803060432690378496546,12548622321219854387027796,

%U 196069714237340352552410777796,3063597127265150338968694860387171

%N Gaussian binomial coefficient [ n,6 ] for q = -5.

%D J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.

%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.

%D M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

%H Vincenzo Librandi, <a href="/A015327/b015327.txt">Table of n, a(n) for n = 6..200</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (13021, 42383355, -26287771375, -3285971421875, 82779990234375, 397369384765625, -476837158203125).

%F G.f.: x^6 /((x-1)*(5*x+1)*(25*x-1)*(625*x-1)*(125*x+1)*(15625*x-1)*(3125*x+1)). - _R. J. Mathar_, Sep 02 2016

%t Table[QBinomial[n, 6, -5], {n, 6, 20}] (* _Vincenzo Librandi_, Oct 29 2012 *)

%o (Sage) [gaussian_binomial(n,6,-5) for n in range(6,15)] # _Zerinvary Lajos_, May 27 2009

%K nonn,easy

%O 6,2

%A _Olivier GĂ©rard_, Dec 11 1999