login
Gaussian binomial coefficient [ n,6 ] for q = -4.
3

%I #20 Dec 07 2019 12:18:18

%S 1,3277,14317213,57741320029,237435704507485,971588061067577437,

%T 3980596286193864759389,16303527542855381993658461,

%U 66780267552779682073190144093,273530932713230996784935699290205

%N Gaussian binomial coefficient [ n,6 ] for q = -4.

%D J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.

%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.

%D M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

%H Vincenzo Librandi, <a href="/A015326/b015326.txt">Table of n, a(n) for n = 6..200</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (3277, 3578484, -902879040, -57784258560, 938078109696, 3518651957248, -4398046511104).

%F G.f.: x^6 / ( (x-1)*(4096*x-1)*(256*x-1)*(64*x+1)*(4*x+1)*(16*x-1)*(1024*x+1) ). - _R. J. Mathar_, Aug 04 2016

%t Table[QBinomial[n, 6, -4], {n, 6, 20}] (* _Vincenzo Librandi_, Oct 29 2012 *)

%o (Sage) [gaussian_binomial(n,6,-4) for n in range(6,16)] # _Zerinvary Lajos_, May 27 2009

%K nonn,easy

%O 6,2

%A _Olivier GĂ©rard_, Dec 11 1999