%I #22 Sep 08 2022 08:44:39
%S 0,-11,-36,-63,-80,-75,-36,49,192,405,700,1089,1584,2197,2940,3825,
%T 4864,6069,7452,9025,10800,12789,15004,17457,20160,23125,26364,29889,
%U 33712,37845,42300,47089,52224,57717
%N a(n) = (2*n - 13)*n^2.
%H Vincenzo Librandi, <a href="/A015246/b015246.txt">Table of n, a(n) for n = 0..770</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F G.f. x*(-11 + 8*x + 15*x^2)/(1-x)^4. - _Ivan Panchenko_, Nov 09 2013
%F From _G. C. Greubel_, Jul 30 2016: (Start)
%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
%F E.g.f.: x*(-11 - 7*x + 2*x^2)*exp(x). (End)
%t Table[(2n-13)n^2,{n,0,40}] (* _Harvey P. Dale_, Mar 23 2011 *)
%t LinearRecurrence[{4,-6,4,-1},{0, -11, -36, -63}, 25] (* _G. C. Greubel_, Jul 30 2016 *)
%o (Magma) [(2*n-13)*n^2: n in [0..40]]; // _Vincenzo Librandi_, Apr 26 2011
%o (PARI) a(n)=(2*n-13)*n^2 \\ _Charles R Greathouse IV_, Jul 30 2016
%K sign,easy
%O 0,2
%A _N. J. A. Sloane_, Dec 11 1999