login
A015215
Sum of Gaussian binomial coefficients for q=23.
2
1, 2, 26, 1108, 318532, 310699784, 2050802289512, 45998820030427216, 6982715817685577376784, 3602226883731790235442134048, 12576944383710950724867108854566304, 149227717546908065915667125958905292219712
OFFSET
0,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
a(0) = 1, a(1) = 2, a(n) = 2*a(n-1) + a(n-2)*((23^(n-1)) - 1). - Vincenzo Librandi, Nov 02 2012
MATHEMATICA
Total/@Table[QBinomial[n, m, 23], {n, 0, 20}, {m, 0, n}] (* Vincenzo Librandi, Nov 02 2012 *)
CROSSREFS
Row sums of triangle A022187.
Sequence in context: A290688 A173103 A002704 * A363892 A158120 A209916
KEYWORD
nonn
STATUS
approved