login
A015212
Sum of Gaussian binomial coefficients for q=21.
1
1, 2, 24, 928, 224096, 180925632, 915592324864, 15519120649837568, 1649093881865807133696, 586980815917441872922703872, 1309843539264798142345101012967424, 9790772765676733007363874643686313525248
OFFSET
0,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
a(0) = 1, a(1) = 2, a(n) = 2*a(n-1) + a(n-2)*((21^(n-1)) - 1). - Vincenzo Librandi, Nov 02 2012
MATHEMATICA
Total/@Table[QBinomial[n, m, 21], {n, 0, 20}, {m, 0, n}] (* Vincenzo Librandi, Nov 02 2012 *)
CROSSREFS
Row sums of triangle A022185.
Sequence in context: A012081 A137274 A002032 * A012228 A062029 A122551
KEYWORD
nonn
STATUS
approved