The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A015209 Sum of Gaussian binomial coefficients for q=18. 1
 1, 2, 21, 688, 123827, 72470454, 234124353817, 2465349491066876, 143340549850680842079, 27168340876252989570097858, 28432984085878392152571573148709, 97003727566351469067244149247119170952 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..50 Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1. FORMULA a(0) = 1, a(1) = 2, a(n) = 2*a(n-1) + a(n-2)*((18^(n-1)) - 1). - Vincenzo Librandi, Nov 02 2012 MATHEMATICA Total/@Table[QBinomial[n, m, 18], {n, 0, 20}, {m, 0, n}] (* Vincenzo Librandi, Nov 02 2012 *) CROSSREFS Row sums of triangle A022182. Sequence in context: A095224 A034984 A024233 * A342267 A113083 A174964 Adjacent sequences:  A015206 A015207 A015208 * A015210 A015211 A015212 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 06:52 EST 2021. Contains 349543 sequences. (Running on oeis4.)