login
A014950
Numbers m such that m divides 10^m - 1.
27
1, 3, 9, 27, 81, 111, 243, 333, 729, 999, 2187, 2997, 4107, 6561, 8991, 12321, 13203, 19683, 20439, 26973, 36963, 39609, 59049, 61317, 80919, 110889, 118827, 151959, 177147, 183951, 242757, 332667, 356481, 455877, 488511, 531441, 551853, 728271
OFFSET
1,2
COMMENTS
Also, m such that m | R(m) = A002275(m). - Lekraj Beedassy, Mar 25 2005
For n > 1, 3 divides a(n). If m is in the sequence and d divides m then for each positive integer k, d^k*m is in the sequence. So if m is in the sequence then m^k is in the sequence for each positive integer k. In particular, 3^k is in this sequence for all k. - Farideh Firoozbakht, Apr 14 2010
Numbers m such that m divides s(m), where s(1) = 1, s(k) = s(k-1) + k*10^(k-1).
Number of terms <= 10^k, beginning with k = 0: 1, 3, 5, 10, 15, 25, 41, 68, 108, 178, 291, ... - Robert G. Wilson v, Nov 30 2013
Numbers m such that m divides A033713(m). - Hans Havermann, Jan 25 2014
REFERENCES
J. D. E. Konhauser et al., Which Way Did The Bicycle Go? Problem 80 pp. 26; 133, Dolciani Math. Exp., No. 18, MAA, Washington DC, 1996.
LINKS
Hans Havermann, Table of n, a(n) for n = 1..1600 (first 800 terms from Robert G. Wilson v)
C. Cooper and R. E. Kennedy, Niven Repunits and 10^n = 1 (mod n), The Fibonacci Quarterly, pp. 139-143, vol 27, May 02 1989.
FORMULA
Solutions to 10^m == 1 (mod m). - Vladeta Jovovic
MATHEMATICA
Select[ Range[3, 1000000, 6], PowerMod[10, #, #] == 1 &] (* modified by Robert G. Wilson v, Dec 03 2013 *)
k = 3; A014950 = {1}; While[k < 1000000, If[ PowerMod[ 10, k, k] == 1, AppendTo[ A014950, k]; Print@ k]; k += 6]; A014950 (* Robert G. Wilson v, Nov 29 2013 *)
PROG
(PARI) is(n)=Mod(10, n)^n==1 \\ Charles R Greathouse IV, Nov 29 2013
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Vladeta Jovovic, Dec 18 2001
More terms from Larry Reeves (larryr(AT)acm.org), Jan 06 2005
Edited by Max Alekseyev, May 20 2011
STATUS
approved