login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014945 Numbers k such that k divides 4^k - 1. 20
1, 3, 9, 21, 27, 63, 81, 147, 171, 189, 243, 441, 513, 567, 657, 729, 903, 1029, 1197, 1323, 1539, 1701, 1971, 2187, 2667, 2709, 3087, 3249, 3591, 3969, 4599, 4617, 5103, 5913, 6321, 6561, 7077, 7203, 8001, 8127, 8379, 9261, 9747, 10773, 11907, 12483 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This sequence is closed under multiplication. - Charles R Greathouse IV, Nov 03 2016

Conjecture: if k divides 4^k - 1, then (4^k - 1)/k is squarefree. - Thomas Ordowski, Dec 24 2018

Following Greathouse's comment, it may be interesting to find the primitive terms, which begin with 1, 3, 21, 147, 171, ...; the terms 9=3*3, 27=3*9, 63=3*21, 81=3*3*9, 189=63*3, 243=3^5, 441=3*147, ... are not primitive. - Bernard Schott, Jan 03 2019

LINKS

Muniru A Asiru, Table of n, a(n) for n = 1..872

FORMULA

a(n) = A014741(n+1)/2.

MAPLE

select(n->modp(4^n-1, n)=0, [$1..13000]); # Muniru A Asiru, Dec 28 2018

MATHEMATICA

Select[Range[12500], Divisible[4^#-1, #]&]  (* Harvey P. Dale, Mar 23 2011 *)

PROG

(PARI) is(n)=Mod(4, n)^n==1 \\ Charles R Greathouse IV, Nov 03 2016

(GAP) a:=Filtered([1..13000], n->(4^n-1) mod n=0);; Print(a); # Muniru A Asiru, Dec 28 2018

(MAGMA) [n: n in [1..12500] | (4^n-1) mod n eq 0 ]; // Vincenzo Librandi, Dec 29 2018

(Python)

for n in range(1, 1000):

    if (4**n-1) % n ==0:

        print(n, end=', ') # Stefano Spezia, Jan 05 2019

CROSSREFS

Sequence in context: A044055 A029542 A014962 * A045590 A242740 A029536

Adjacent sequences:  A014942 A014943 A014944 * A014946 A014947 A014948

KEYWORD

nonn,changed

AUTHOR

Olivier Gérard

EXTENSIONS

More terms and better description from Benoit Cloitre, Mar 05 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 04:14 EST 2019. Contains 319323 sequences. (Running on oeis4.)