OFFSET
0,3
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Index entries for linear recurrences with constant coefficients, signature (18,-33,16).
FORMULA
a(n) = 16*a(n-1) + n = 18*a(n-1) - 33*a(n-2) + 16*a(n-3).
G.f.: x/((1-16*x) * (x-1)^2 ). - R. J. Mathar, Apr 29 2010
MAPLE
a:=n->sum((16^(n-j)-1)/15, j=0..n): seq(a(n), n=1..16); # Zerinvary Lajos, Jan 05 2007
n0:=20: tabl:=array(1..n0-1): for n from 0 to n0 do: tabl[n+1]:=(4^(2*n+2) - 15*n - 16)/225:od:print( tabl): # Michel Lagneau, Apr 26 2010
MATHEMATICA
s=0; lst={}; Do[AppendTo[lst, s+=s+=s+=s+=s+=n], {n, 5!}]; lst/16 (* Vladimir Joseph Stephan Orlovsky, Oct 20 2009 *)
Table[(16^(n+1)-15*n-16)/225, {n, 0, 20}] (* Harvey P. Dale, Dec 20 2010 *)
LinearRecurrence[{18, -33, 16}, {0, 1, 18}, 20] (* Vincenzo Librandi, Oct 20 2012 *)
PROG
(Magma) I:=[0, 1, 18]; [n le 3 select I[n] else 18*Self(n-1) - 33*Self(n-2) + 16*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 20 2012
(Maxima) A014899(n):=(16^(n+1)-15*n-16)/225$ makelist(A014899(n), n, 0, 30); /* Martin Ettl, Nov 07 2012 */
(PARI) a(n)=(16^(n+1)-15*n)\225 \\ Charles R Greathouse IV, May 15 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
a(0) added by R. J. Mathar, Apr 29 2010
STATUS
approved