login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014896 a(1) = 1, a(n) = 13*a(n-1) + n. 2
1, 15, 198, 2578, 33519, 435753, 5664796, 73642356, 957350637, 12445558291, 161792257794, 2103299351334, 27342891567355, 355457590375629, 4620948674883192, 60072332773481512, 780940326055259673, 10152224238718375767, 131978915103338884990 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..200

Index entries for linear recurrences with constant coefficients, signature (15,-27,13).

FORMULA

a(n) = -13/144 + 13/144*13^n - 1/12*n, with n>=1. - Paolo P. Lava, Jan 14 2009

a(n) = 15*a(n-1)-27*a(n-2)+13*a(n-3), with a(1)=1, a(2)=15, a(3)=198. - Vincenzo Librandi, Oct 20 2012

G.f.: x/((1-13*x)*(1-x)^2). - Jinyuan Wang, Mar 11 2020

MAPLE

a:=n->sum((13^(n-j)-1)/12, j=0..n): seq(a(n), n=1..17); # Zerinvary Lajos, Jan 05 2007

a:= n-> (Matrix([[1, 0, 1], [1, 1, 1], [0, 0, 13]])^n)[2, 3]:

seq(a(n), n=1..17);  # Alois P. Heinz, Aug 06 2008

MATHEMATICA

LinearRecurrence[{15, -27, 13}, {1, 15, 198}, 20] (* Vincenzo Librandi, Oct 20 2012 *)

PROG

(MAGMA) I:=[1, 15, 198]; [n le 3 select I[n] else 15*Self(n-1) - 27*Self(n-2)+ 13*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 20 2012

(Maxima)

a[1]:1$

a[2]:15$

a[3]:198$

a[n]:=15*a[n-1]-27*a[n-2]+13*a[n-3]$

A014896(n):=a[n]$ makelist(A014896(n), n, 1, 30); /* Martin Ettl, Nov 07 2012 */

CROSSREFS

Sequence in context: A180789 A078264 A322914 * A048444 A002007 A207835

Adjacent sequences:  A014893 A014894 A014895 * A014897 A014898 A014899

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 7 13:01 EDT 2020. Contains 333305 sequences. (Running on oeis4.)