login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014882 a(1)=1, a(n)=12*a(n-1)+n. 2
1, 14, 171, 2056, 24677, 296130, 3553567, 42642812, 511713753, 6140565046, 73686780563, 884241366768, 10610896401229, 127330756814762, 1527969081777159, 18335628981325924, 220027547775911105, 2640330573310933278, 31683966879731199355 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..200

Index entries for linear recurrences with constant coefficients, signature (14, -25, 12).

FORMULA

a(n) = -12/121+12/121*12^n-1/11*n, with n>=1. - Paolo P. Lava, Jan 14 2009

a(1)=1, a(2)=14, a(3)=171, a(n)=14*a(n-1)-25*a(n-2)+12*a(n-3). - Vincenzo Librandi, Oct 20 2012

MAPLE

a:=n->sum((12^(n-j)-1^(n-j))/11, j=0..n): seq(a(n), n=1..17); # Zerinvary Lajos, Jan 12 2007

a:= n-> (Matrix([[1, 0, 1], [1, 1, 1], [0, 0, 12]])^n)[2, 3]:

seq(a(n), n=1..17);  # Alois P. Heinz, Aug 06 2008

MATHEMATICA

LinearRecurrence[{14, -25, 12}, {1, 14, 171}, 201] (* Vincenzo Librandi, Oct 20 2012 *)

PROG

(MAGMA) I:=[1, 14, 171]; [n le 3 select I[n] else 14*Self(n-1) - 25*Self(n-2)+ 12*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 20 2012

CROSSREFS

Sequence in context: A098299 A254811 A099158 * A048443 A191690 A016136

Adjacent sequences:  A014879 A014880 A014881 * A014883 A014884 A014885

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 12:56 EST 2016. Contains 278678 sequences.