login
A014874
Numbers k that divide s(k), where s(1)=1, s(j)=23*s(j-1)+j.
0
1, 11, 23, 121, 253, 1331, 2783, 10603, 14641, 29647, 30613, 87967, 116633, 161051, 326117, 336743, 967637, 1282963, 1771561, 2023241, 3587287, 3704173, 4887983, 9809591, 10644007, 13667267, 14112593, 19487171, 19765471, 22255651, 29338501
OFFSET
1,2
COMMENTS
Observations: 11^n where n >= 0 is in the sequence. All a(n) > 1 have 11 and/or 23 as factors. - Delbert L. Johnson, May 12 2024
MAPLE
# Maple code from N. J. A. Sloane, Jan 02 2021
# To test if n is a member:
f:=proc(n) local s, k;
s:=0;
for k from 1 to n do s:=(23*s+k) mod n; od;
if s=0 then 1 else -1; fi;
end;
# To compute the terms up to 10000:
ans:=[]; for n from 1 to 10000 do if f(n)=1 then ans:=[op(ans), n]; fi; od: ans;
CROSSREFS
Sequence in context: A146084 A179520 A288406 * A027899 A106388 A171068
KEYWORD
nonn,more
EXTENSIONS
More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jan 30 2001
a(21)-a(31) from Delbert L. Johnson, May 12 2024
STATUS
approved