login
A014833
a(n) = 2^n - n(n+1)/2.
3
1, 1, 1, 2, 6, 17, 43, 100, 220, 467, 969, 1982, 4018, 8101, 16279, 32648, 65400, 130919, 261973, 524098, 1048366, 2096921, 4194051, 8388332, 16776916, 33554107, 67108513, 134217350, 268435050, 536870477, 1073741359, 2147483152, 4294966768, 8589934031
OFFSET
0,4
FORMULA
From Harvey P. Dale, May 12 2011: (Start)
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4); a(0)=1, a(1)=1, a(2)=1, a(3)=2.
G.f.: 1/(1-2*x) + 1/(-1+x)^3 + 1/(-1+x)^2. (End)
a(n) = A331105(n,n) for n>0. - Alois P. Heinz, Jan 16 2020
MAPLE
seq(2^n-n*(n+1)/2, n=0..30); # Zerinvary Lajos, Jul 01 2007
MATHEMATICA
Table[2^n-n (n+1)/2, {n, 0, 50}] (* or *) LinearRecurrence[{5, -9, 7, -2}, {1, 1, 1, 2}, 50] (* Harvey P. Dale, May 12 2011 *)
PROG
(Magma) [2^n - n*(n+1)/2: n in [0..50]]; // Vincenzo Librandi, Apr 25 2011
CROSSREFS
KEYWORD
nonn
STATUS
approved