login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014817 a(n) = Sum_{k=1..n} floor(k^2/n). 9
1, 2, 4, 7, 9, 13, 18, 24, 29, 34, 42, 51, 57, 67, 78, 90, 97, 110, 122, 137, 149, 163, 180, 198, 211, 226, 246, 265, 281, 303, 324, 348, 365, 386, 412, 439, 457, 483, 512, 540, 561, 590, 618, 651, 679, 709, 742 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

M. Eichler and D. Zagier, The Theory of Jacobi Forms, Birkhauser, 1985, p. 103.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..5000

FORMULA

a(n) = n +A166375(n).

For prime p>2, a(p) = (p^2+2)/3 - A228131(p)/p. In particular, for prime p==1 (mod 4), a(p) = (p^2+2)/3. - Max Alekseyev, Aug 11 2013

EXAMPLE

Row sums of the underlying triangle of floor(k^2/n), 1<=k<=n:

1;

0,2;

0,1,3;

0,1,2,4;

0,0,1,3,5;

0,0,1,2,4,6;

0,0,1,2,3,5,7;

0,0,1,2,3,4,6,8;

0,0,1,1,2,4,5,7,9;

0,0,0,1,2,3,4,6,8,10;

- R. J. Mathar, Aug 09 2013

MAPLE

A014817 := m->sum( floor(k^2/m), k=1..m);

MATHEMATICA

Table[Sum[Floor[k^2/n], {k, n}], {n, 50}] (* Harvey P. Dale, Feb 23 2015 *)

PROG

(PARI) A014817(n)=sum(k=1, n, k^2\n)  \\ M. F. Hasler, Dec 11 2010

(PARI) a(n)=n^2-sum(m=1, n, sqrtint(n*m-1)) \\ Charles R Greathouse IV, Jun 20 2013

(MAGMA) [(&+[Floor(k^2/n): k in [1..n]]): n in [1..50]]; // G. C. Greubel, May 10 2018

CROSSREFS

Cf. A177041, A166387, A166375, A165993, A227841, A227842.

Sequence in context: A036386 A280417 A099847 * A090893 A100486 A139533

Adjacent sequences:  A014814 A014815 A014816 * A014818 A014819 A014820

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 21 06:55 EDT 2019. Contains 325192 sequences. (Running on oeis4.)