|
|
A014794
|
|
Squares of even octagonal numbers.
|
|
4
|
|
|
0, 64, 1600, 9216, 30976, 78400, 166464, 313600, 541696, 876096, 1345600, 1982464, 2822400, 3904576, 5271616, 6969600, 9048064, 11560000, 14561856, 18113536, 22278400, 27123264, 32718400, 39137536, 46457856, 54760000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..25.
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
|
|
FORMULA
|
G.f.: 64*x*(1+20*x+29*x^2+4*x^3)/(1-x)^5. - Colin Barker, Jan 06 2012
a(n) = 16n^2*(3n-1)^2. - Vincenzo Librandi, Jan 07 2012
|
|
MATHEMATICA
|
Table[16*n^2*(3*n-1)^2, {n, 0, 30}] (* Vincenzo Librandi, Jan 07 2012 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 64, 1600, 9216, 30976}, 30] (* Harvey P. Dale, Nov 27 2015 *)
|
|
PROG
|
(MAGMA) [16*n^2*(3*n-1)^2: n in [1..50]]; // Vincenzo Librandi, Jan 07 2012
(PARI) a(n) = 16*n^2*(3*n-1)^2 \\ Vincenzo Librandi, Jan 07 2012
|
|
CROSSREFS
|
Cf. A000567, A014641, A014642, A014793.
Sequence in context: A208313 A145218 A282526 * A224282 A224205 A162994
Adjacent sequences: A014791 A014792 A014793 * A014795 A014796 A014797
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Mohammad K. Azarian
|
|
EXTENSIONS
|
More terms from Patrick De Geest, Aug 2000
a(8) corrected by Vincenzo Librandi, Jan 07 2012
|
|
STATUS
|
approved
|
|
|
|