The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A014642 Even octagonal numbers: a(n) = 4*n*(3*n-1). 15
 0, 8, 40, 96, 176, 280, 408, 560, 736, 936, 1160, 1408, 1680, 1976, 2296, 2640, 3008, 3400, 3816, 4256, 4720, 5208, 5720, 6256, 6816, 7400, 8008, 8640, 9296, 9976, 10680, 11408, 12160, 12936, 13736, 14560, 15408, 16280, 17176, 18096, 19040, 20008, 21000, 22016 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS 8 times pentagonal numbers. - Omar E. Pol, Dec 11 2008 Sequence found by reading the line from 0, in the direction 0, 8, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012 The sequence forms the even nesting cube-frames (see illustrations in A000567), which separate and appear according to formula along the axes on the zero-centered and one-centered hexagonal number spirals, as well as the axes of the zero-centered and one-centered square number spirals. See illustrations in links. - John Elias, Jul 20 2022 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = A000326(n)*8. - Omar E. Pol, Dec 11 2008 a(n) = A049450(n)*4 = A033579(n)*2. - Omar E. Pol, Dec 13 2008 a(n) = a(n-1) + 24*n - 16 (with a(0)=0). - Vincenzo Librandi, Nov 20 2010 G.f.: x*(8+16*x)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 06 2012 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - G. C. Greubel, Jun 07 2017 E.g.f.: 4*x*(2 + 3*x)*exp(x). - G. C. Greubel, Oct 09 2019 From Amiram Eldar, Mar 24 2021: (Start) Sum_{n>=1} 1/a(n) = 3*log(3)/8 - Pi/(8*sqrt(3)). Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/2 - Pi/(4*sqrt(3)). (End) MAPLE seq(8*binomial(3*n, 2)/3, n=0..50); # G. C. Greubel, Oct 09 2019 MATHEMATICA LinearRecurrence[{3, -3, 1}, {0, 8, 40}, 50] (* G. C. Greubel, Jun 07 2017 *) PolygonalNumber[8, Range[0, 90, 2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 19 2020 *) PROG (PARI) vector(51, n, 8*binomial(3*(n-1), 2)/3 ) \\ G. C. Greubel, Jun 07 2017 (Magma) [8*Binomial(3*n, 2)/3: n in [0..50]]; // G. C. Greubel, Oct 09 2019 (Sage) [8*binomial(3*n, 2)/3 for n in (0..50)] # G. C. Greubel, Oct 09 2019 (GAP) List([0..50], n-> 8*Binomial(3*n, 2)/3); # G. C. Greubel, Oct 09 2019 CROSSREFS Cf. A000567, A000326, A001082, A014641, A014793, A014794, A033579, A049450. Sequence in context: A226904 A305075 A069083 * A211631 A279273 A143943 Adjacent sequences: A014639 A014640 A014641 * A014643 A014644 A014645 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Patrick De Geest STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 05:50 EST 2022. Contains 358578 sequences. (Running on oeis4.)