login
Partial sums of A001935; at one time this was conjectured to agree with A007478.
3

%I #23 Jul 21 2018 13:22:49

%S 1,1,1,1,2,3,5,8,12,18,27,39,55,77,106,144,194,258,340,445,577,743,

%T 951,1209,1529,1924,2408,3000,3722,4598,5658,6938,8477,10323,12533,

%U 15169,18307,22035,26451,31673,37836,45092,53620,63626,75342,89038,105024,123648

%N Partial sums of A001935; at one time this was conjectured to agree with A007478.

%H Alois P. Heinz, <a href="/A014605/b014605.txt">Table of n, a(n) for n = 0..10000</a>

%H Bar-Natan, Dror, <a href="http://www.math.toronto.edu/drorbn/LOP.html#OnVassiliev">On the Vassiliev Knot Invariants</a>, Topology 34 (1995) 423-472.

%H D. Bar-Natan, <a href="http://www.math.toronto.edu/drorbn/LOP.html">Bibliography of Vassiliev Invariants</a>

%H Joan S. Birman, <a href="https://www.maa.org/programs/maa-awards/writing-awards/new-points-of-view-in-knot-theory">New points of view in knot theory (amstex)</a>, Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 2, 253-287.

%H Jan Kneissler, <a href="http://arxiv.org/abs/q-alg/9706022">The number of primitive Vassiliev invariants of degree up to 12</a>, arXiv:q-alg/9706022, 1997.

%H <a href="/index/K#knots">Index entries for sequences related to knots</a>

%F a(n) = a(n-1) + A001935(n-4), n>3. - _R. J. Mathar_, Mar 06 2016

%p b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(`if`(

%p irem(d, 4)=0, 0, d), d=numtheory[divisors](j)), j=1..n)/n)

%p end:

%p a:= proc(n) option remember; `if`(n<4, 1, a(n-1)+b(n-4)) end:

%p seq(a(n), n=0..60); # _Alois P. Heinz_, Jul 21 2018

%t QP = QPochhammer; Join[{1, 0, 0, 0}, CoefficientList[QP[q^4]/QP[q]+O[q]^50, q]] // Accumulate (* _Jean-François Alcover_, Jul 21 2018 *)

%K nonn

%O 0,5

%A _David Broadhurst_