

A014600


Class numbers h(D) of imaginary quadratic fields with discriminant D=0,1 mod 4, D<0.


5



1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 3, 2, 2, 2, 4, 2, 1, 3, 5, 2, 2, 2, 4, 4, 3, 2, 4, 2, 1, 4, 7, 2, 2, 3, 5, 4, 3, 4, 6, 2, 2, 3, 8, 4, 2, 2, 5, 6, 3, 3, 8, 2, 2, 6, 10, 4, 2, 3, 5, 4, 5, 4, 6, 4, 3, 6, 10, 4, 2, 2, 7, 6, 4, 4, 10, 4, 1, 8, 11, 4, 4, 3, 6, 6, 5, 4, 8, 4, 2, 5, 13, 4, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,7


REFERENCES

H. Cohen, Course in Computational Alg. No. Theory, Springer, 1993, pp. 5145.


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
S. R. Finch, Class number theory
Steven R. Finch, Class number theory [Cached copy, with permission of the author]
Rick L. Shepherd, Binary quadratic forms and genus theory, Master of Arts Thesis, University of North Carolina at Greensboro, 2013.


PROG

(PARI) a(n)=qfbclassno(n\2*4n%23) \\ Charles R Greathouse IV, Apr 25 2013
(PARI) a(n)=quadclassunit(n\2*4n%23).no \\ Charles R Greathouse IV, Apr 25 2013


CROSSREFS

Sequence in context: A285202 A004737 A255616 * A165475 A319420 A267134
Adjacent sequences: A014597 A014598 A014599 * A014601 A014602 A014603


KEYWORD

nonn


AUTHOR

Eric Rains (rains(AT)caltech.edu)


STATUS

approved



