%I #295 Sep 14 2024 06:50:45
%S 1,1,0,1,1,0,0,1,1,1,0,0,1,0,0,1,1,1,0,1,1,0,0,0,1,1,0,0,1,0,0,1,1,1,
%T 0,1,1,0,0,1,1,1,0,0,1,0,0,0,1,1,0,1,1,0,0,0,1,1,0,0,1,0,0,1,1,1,0,1,
%U 1,0,0,1,1,1,0,0,1,0,0,1,1,1,0,1,1,0,0,0,1,1,0,0,1,0,0,0,1,1,0
%N The regular paper-folding sequence (or dragon curve sequence).
%C a(n) is the complement of the bit to the left of the least significant "1" in the binary expansion of n+1. E.g., n = 3, n+1 = 4 = 100_2, so a(3) = (complement of bit to left of 1) = 1. - _Robert L. Brown_, Nov 28 2001 [Adjusted to match offset by _N. J. A. Sloane_, Apr 15 2021]
%C To construct the sequence: start from 1,(..),0,(..),1,(..),0,(..),1,(..),0,(..),1,(..),0,... and fill undefined places with the sequence itself. - _Benoit Cloitre_, Jul 08 2007
%C This is the characteristic function of A091072 - 1. - _Gary W. Adamson_, Apr 11 2010
%C Turns (by 90 degrees) of the Heighway dragon which can be rendered as follows: [Init] Set n=0 and direction=0. [Draw] Draw a unit line (in the current direction). Turn left/right if a(n) is zero/nonzero respectively. [Next] Set n=n+1 and goto (draw). See fxtbook link below. - _Joerg Arndt_, Apr 15 2010
%C Sequence can be obtained by the L-system with rules L->L1R, R->L0R, 1->1, 0->0, starting with L, and then dropping all L's and R's (see example). - _Joerg Arndt_, Aug 28 2011
%C From _Gary W. Adamson_, Jun 20 2012: (Start)
%C One half of the infinite Farey tree can be mapped one-to-one onto A014577 since both sequences can be derived directly from the binary. First few terms are
%C 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, ...
%C 1/2 2/3 1/3 3/4 3/5 2/5 1/4 4/5 5/7 5/8, ...
%C Infinite Farey tree fractions can be derived from the binary by appending a repeat of rightmost binary term to the right, then recording the number of runs to obtain the continued fraction representation. Example: 9 = 1001 which becomes 10011 which becomes [1,2,2] = 5/7. (End)
%C The sequence can be considered as a binomial transform operator for a target sequence S(n). Replace the first 1 in A014577 with the first term in S(n), then for successive "1" term in A014577, map the next higher term in S(n). If "0" in A014577, map the next lower term in S(n). Using the sequence S(n) = (1, 3, 5, 7, ...), we obtain (1), (3, 1), (3, 5, 3, 1), (3, 5, 7, 5, 3, 5, 3, 1), .... Then parse the terms into subsequences of 2^k terms, adding the terms in each string. We obtain (1, 4, 12, 32, 80, ...), the binomial transform of (1, 3, 5, 7, ...). The 8-bit string has one 1, three 5's, three 7's and one 1) as expected, or (1, 3, 3, 1) dot (1, 3, 5, 7). - _Gary W. Adamson_, Jun 24 2012
%C From _Gary W. Adamson_, May 29 2013: (Start)
%C The sequence can be generated directly from the lengths of continued fraction representations of fractions in one half of the Stern-Brocot tree (fractions between 0 and 1):
%C 1/2
%C 1/3 2/3
%C 1/4 2/5 3/5 3/4
%C 1/5 2/7 3/8 3/7 4/7 5/8 5/7 4/5
%C ...
%C and their corresponding continued fraction representations are:
%C [2]
%C [3] [1,2]
%C [4] [2,2] [1,1,2] [1,3]
%C [5] [3,2] [2,1,2] [2,3] [1,1,3] [1,1,1,2] [1,2,2] [1,4]
%C ...
%C Record the lengths by rows then reverse rows, getting:
%C 1,
%C 2, 1,
%C 2, 3, 2, 1,
%C 2, 3, 4, 3, 2, 3, 2, 1,
%C ...
%C start with "1" and if the next term is greater than the current term, record a 1, otherwise 0; getting the present sequence, the Harter-Heighway dragon curve. (End)
%C The paper-folding word "110110011100100111011000..." can be created by concatenating the terms of a fixed point of the morphism or string substitution rule: 00 -> 1000, 01 -> 1001, 10 -> 1100 & 11 -> 1101, beginning with "11". - _Robert G. Wilson v_, Jun 11 2015
%C From _Gary W. Adamson_, Jun 04 2021: (Start)
%C Since the Heighway dragon is composed of right angles, it can be mapped with unit trajectories (Right = 1, Left = (-1), Up = i and Down = -i) on the complex plane where i = sqrt(-1). The initial (0th) iterate is chosen in this case to be the unit line from (0,0) to (-1,0). Then follow the directions below as indicated, resulting in a reflected variant of the dragon curve shown at the Eric Weisstein link. The conjectured system of complex plane trajectories is:
%C 0 -1
%C 1 -1, i
%C 2 -1, i, 1, i
%C 3 -1, i, 1, i, 1, -i, 1, i
%C 4 -1, i, 1, i, 1, -i, 1, i, 1, -i, -1, -i, 1, -i, 1, i
%C ...
%C The conjecture succeeds through the 4th iterate. It appears that to generate the (n+1)-th row, bring down the n-th row as the left half of row (n+1). For the right half of row (n+1), bring down the n-th row but change the signs of the first half of row n. For example, to get the complex plane instructions for the third iterate of the dragon curve, bring down (-1, i, 1, i) as the left half, and the right half is (1, -i, 1, i). (End)
%C From _Gary W. Adamson_, Jun 09 2021: (Start)
%C Partial sums of the iterate trajectories produce a sequence of complex addresses for unit segments. Partial sums of row 4 are: -1, (-1+i), i, 2i, (1+2i), (1+i), (2+i), (2+2i), (3+2i), (3+i), (2+i), 2, 3, (3-i), (4-i), 4. (zeros are omitted with terms of the form a+0i). The reflected variant of the dragon curve has the 0th iterate from (0,0) to (1,0), and the respective addresses simply change the signs of the real terms. (End)
%D J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, pp. 155, 182.
%D Chandler Davis and Donald E. Knuth, Number Representations and Dragon Curves -- I and II, Journal of Recreational Mathematics, volume 3, number 2, April 1970, pages 66-81, and number 3, July 1970, pages 133-149. Reprinted in Donald E. Knuth, Selected Papers on Fun and Games, CSLI Publications, 2010, pages 571-614.
%D Michel Dekking, Michel Mendes France, and Alf van der Poorten, "Folds", The Mathematical Intelligencer, 4.3 (1982): 130-138 & front cover, and 4:4 (1982): 173-181 (printed in two parts).
%D Martin Gardner, Mathematical Magic Show, New York: Vintage, pp. 207-209 and 215-220, 1978.
%D Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
%H Ivan Panchenko, <a href="/A014577/b014577.txt">Table of n, a(n) for n = 0..10000</a>
%H Ibrahim M. Alabdulmohsin, <a href="https://doi.org/10.1007/978-3-319-74648-7_4">"Analytic Summability Theory"</a>, in Summability Calculus: A Comprehensive Theory of Fractional Finite Sums, Springer, Cham, pp 65-91.
%H J.-P. Allouche and M. Mendes France, <a href="https://webusers.imj-prg.fr/~jean-paul.allouche/allmendeshouches.pdf">Automata and Automatic Sequences</a>, in: F. Axel and D. Gratias (eds), Beyond Quasicrystals. Centre de Physique des Houches, vol 3. Springer, Berlin, Heidelberg, pp. 293-367, 1995; DOI https://doi.org/10.1007/978-3-662-03130-8_11.
%H J.-P. Allouche and M. Mendes France, <a href="/A003842/a003842.pdf">Automata and Automatic Sequences</a>, in: Axel F. and Gratias D. (eds), Beyond Quasicrystals. Centre de Physique des Houches, vol 3. Springer, Berlin, Heidelberg, pp. 293-367, 1995; DOI https://doi.org/10.1007/978-3-662-03130-8_11. [Local copy]
%H Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, pp. 88-92; image of the dragon curve on p. 89.
%H Paul Barry, <a href="https://arxiv.org/abs/2107.00442">Conjectures and results on some generalized Rueppel sequences</a>, arXiv:2107.00442 [math.CO], 2021.
%H Michael Coons, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Coons/coons3.html">An Irrationality Measure for Regular Paperfolding Numbers</a>, Journal of Integer Sequences, Vol. 15 (2012), Article #12.1.6.
%H Danielle Cox and K. McLellan, <a href="https://www.fq.math.ca/Papers1/55-2/CoxMcLellan021717.pdf">A problem on generation sets containing Fibonacci numbers</a>, Fib. Quart., 55 (No. 2, 2017), 105-113.
%H Alexey Garber, <a href="https://arxiv.org/abs/1807.05627">On triangular paperfolding patterns</a>, arXiv:1807.05627 [math.CO], 2018.
%H Franz Gahler and Johan Nilsson, <a href="http://arxiv.org/abs/1408.4997">Substitution rules for higher-dimensional paperfolding structures</a>, arXiv:1408.4997 [math.DS], 2014.
%H A. M. Hinz, S. Klavžar and U. Milutinović, and C. Petr, <a href="http://dx.doi.org/10.1007/978-3-0348-0237-6">The Tower of Hanoi - Myths and Maths</a>, Birkhäuser 2013. See page 63. <a href="http://tohbook.info">Book's website</a>
%H Eve Kivivuori, <a href="http://hdl.handle.net/10138/562976">Implementing, analyzing, and benchmarking the Relative Lempel-Ziv compression algorithm</a>, Master's Thesis, Univ. Helsinki (Finland 2023).
%H Guy Melançon, Factorizing infinite words using Maple, <a href="https://www.researchgate.net/publication/322200645_MapleTech_Volume_4_no_1_Spring_1997">MapleTech journal</a>, (14 Mb) vol. 4, no. 1, 1997, pp. 34-42, esp. p. 36.
%H Johan Nilsson, <a href="https://arxiv.org/abs/2409.03068">The Pattern Complexity of the 2-Dimensional Paperfolding Sequence</a>, arXiv:2409.03068 [math.CO], 2024. See p. 1.
%H Larry Riddle, <a href="https://larryriddle.agnesscott.org/ifs/heighway/heighway.htm">Heighway Dragon</a>, Classic Iterated Function Systems.
%H Luke Schaeffer and Jeffrey Shallit, <a href="https://doi.org/10.37236/5752">Closed, Palindromic, Rich, Privileged, Trapezoidal, and Balanced Words in Automatic Sequences</a>, Electronic Journal of Combinatorics 23(1) (2016), #P1.25.
%H J. E. S. Socolar and J. M. Taylor, <a href="http://arxiv.org/abs/1003.4279">An aperiodic hexagonal tile</a>, arXiv:1003.4279 [math.CO], 2010.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DragonCurve.html">Dragon curve</a>.
%H Hans Zantema, <a href="https://doi.org/10.1007/978-3-030-40608-0_18">Complexity of Automatic Sequences</a>, International Conference on Language and Automata Theory and Applications (LATA 2020): Language and Automata Theory and Applications, 260-271.
%H <a href="/index/Ar#2-automatic">Index entries for 2-automatic sequences</a>.
%H <a href="/index/Fo#fold">Index entries for sequences obtained by enumerating foldings</a>.
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>.
%F a(n) = (1+Jacobi(-1,n+1))/2 (cf. A034947). - _N. J. A. Sloane_, Jul 27 2012 [Adjusted to match offset by _Peter Munn_, Jul 01 2022]
%F Set a=1, b=0, S(0)=a, S(n+1) = S(n), a, F(S(n)), where F(x) reverses x and then interchanges a and b; sequence is limit S(infinity).
%F From _Ralf Stephan_, Jul 03 2003: (Start)
%F a(4*n) = 1, a(4*n+2) = 0, a(2*n+1) = a(n).
%F a(n) = 1 - A014707(n) = 2 - A014709(n) = A014710(n) - 1. (End)
%F Set a=1, b=0, S(0)=a, S(n+1)=S(n), a, M(S(n)), where M(S) is S but the bit in the middle position flipped. (Proof via isomorphism of both formulas to a modified string substitution.) - _Benjamin Heiland_, Dec 11 2011
%F a(n) = 1 if A005811(n+1) > A005811(n), otherwise a(n) = 0. - _Gary W. Adamson_, Jun 20 2012
%F a((2*n+1)*2^p-1) = (n+1) mod 2, p >= 0. - _Johannes W. Meijer_, Jan 28 2013
%F G.f. g(x) satisfies g(x) = x*g(x^2) + 1/(1-x^4). - _Robert Israel_, Jan 06 2015
%F a(n) = 1 - A065339(n+1) mod 2. - _Peter Munn_, Jun 29 2022
%F From _A.H.M. Smeets_, Mar 19 2023: (Start)
%F a(n) = 1 - A038189(n+1).
%F a(n) = A082410(n+2).
%F a(n) = 1 - A089013(n+1)
%F a(n) = (3 - A099545(n+1))/2.
%F a(n) = (A112347(n+1) + 1)/2.
%F a(n) = (A121238(n+1) + 1)/2.
%F a(n) = (A317335(n) + 2)/3.
%F a(n) = (A317336(n) + 10)/3. (End)
%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/2. - _Amiram Eldar_, Sep 14 2024
%e 1 + x + x^3 + x^4 + x^7 + x^8 + x^9 + x^12 + x^15 + x^16 + x^17 + x^19 + ...
%e From _Joerg Arndt_, Aug 28 2011: (Start)
%e Generation via string substitution:
%e Start: L
%e Rules:
%e L --> L1R
%e R --> L0R
%e 0 --> 0
%e 1 --> 1
%e -------------
%e 0: (#=1)
%e L
%e 1: (#=3)
%e L1R
%e 2: (#=7)
%e L1R1L0R
%e 3: (#=15)
%e L1R1L0R1L1R0L0R
%e 4: (#=31)
%e L1R1L0R1L1R0L0R1L1R1L0R0L1R0L0R
%e 5: (#=63)
%e L1R1L0R1L1R0L0R1L1R1L0R0L1R0L0R1L1R1L0R1L1R0L0R0L1R1L0R0L1R0L0R
%e Drop all L and R to obtain 1101100111001001110110001100100
%e (End)
%p nmax:=98: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 0 to ceil(nmax/(p+2))+1 do a((2*n+1)*2^p-1) := (n+1) mod 2 od: od: seq(a(n), n=0..nmax); # _Johannes W. Meijer_, Jan 28 2013
%p a014577 := proc(n) local p,s1,s2,i;
%p if n=0 then return(1); fi;
%p s1:=convert(n,base,2); s2:=nops(s1);
%p for i from 1 to s2 do if s1[i]=1 then p:=i; break; fi; od:
%p if p <= s2-1 then 1-s1[p+1]; else 1; fi; end;
%p [seq(a014577(i),i=1..120)]; # _N. J. A. Sloane_, Apr 08 2021
%p # third Maple program:
%p a:= n-> 1-irem(iquo((n+1)/2^padic[ordp](n+1, 2), 2), 2):
%p seq(a(n), n=0..120); # _Alois P. Heinz_, Apr 08 2021
%t a[n_] := Boole[EvenQ[((n+1)/2^IntegerExponent[n+1, 2]-1)/2]]; Table[a[n], {n, 0, 98}] (* _Jean-François Alcover_, Feb 16 2012, after _Gary W. Adamson_, updated Nov 21 2014 *)
%t Table[1-(((Mod[#1,2^(#2+2)]/2^#2)&[n,IntegerExponent[n,2]])-1)/2,{n,1,100,1}] (* WolframAlpha compatible code; _Robert L. Brown_, Jan 06 2015 *)
%t MapThread[(a[x_/;IntegerQ[(x-#1)/4]]:= #2)&,{{1,3},{1,0}}];a[x_/;IntegerQ[x/2]]:=a[x/2];a/@ Range[100] (* _Bradley Klee_, Aug 04 2015 *)
%t (1 + JacobiSymbol[-1, Range[100]])/2 (* _Paolo Xausa_, May 22 2024 *)
%t Array[Boole[BitAnd[#, BitAnd[#, -#]*2] == 0] &, 100] (* _Paolo Xausa_, May 22 2024, after _Joerg Arndt_ C++ code *)
%o (C++) /* code from the fxt library, about 5 CPU cycles per computation */
%o bool bit_paper_fold(ulong k)
%o {
%o ulong h = k & -k; /* == lowest_one(k) */
%o k &= (h<<1);
%o return ( k==0 );
%o } /* _Joerg Arndt_, Apr 15 2010 */
%o (PARI) {a(n) = if( n%2, a(n\2), 1 - (n/2%2))} /* _Michael Somos_, Feb 05 2012 */
%o (PARI) a(n)=1/2*(1+(-1)^(1/2*((n+1)/2^valuation(n+1,2)-1))) \\ _Ralf Stephan_, Sep 02 2013
%o (Magma) [(1+KroneckerSymbol(-1,n))/2: n in [1..100]]; // _Vincenzo Librandi_, Aug 05 2015
%o (Magma) [Floor(1/2*(1+(-1)^(1/2*((n+1)/2^Valuation(n+1, 2)-1)))): n in [0..100]]; // _Vincenzo Librandi_, Aug 05 2015
%o (Python)
%o def A014577(n):
%o s = bin(n+1)[2:]
%o m = len(s)
%o i = s[::-1].find('1')
%o return 1-int(s[m-i-2]) if m-i-2 >= 0 else 1 # _Chai Wah Wu_, Apr 08 2021
%Y Essentially the same: A014707, A014709, A014710, A034947, A038189, A082410, A089013, A099545, A112347, A121238, A317335, A317336.
%Y Cf. A059125, A065339, A005811, A220466, A088748, A091072, A343173 (first differences), A343174 (partial sums).
%Y The two bisections are A000035 and the sequence itself.
%Y See A343181 for prefixes of length 2^k-1.
%K nonn,easy,nice
%O 0,1
%A _N. J. A. Sloane_, _Eric W. Weisstein_
%E More terms from _Ralf Stephan_, Jul 03 2003