login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014565 Decimal expansion of rabbit constant. 16

%I

%S 7,0,9,8,0,3,4,4,2,8,6,1,2,9,1,3,1,4,6,4,1,7,8,7,3,9,9,4,4,4,5,7,5,5,

%T 9,7,0,1,2,5,0,2,2,0,5,7,6,7,8,6,0,5,1,6,9,5,7,0,0,2,6,4,4,6,5,1,2,8,

%U 7,1,2,8,1,4,8,4,6,5,9,6,2,4,7,8,3,1,6,1,3,2,4,5,9,9,9,3,8,8,3,9,2,6,5

%N Decimal expansion of rabbit constant.

%C Davison shows that the continued fraction is (essentially) A000301 and proves that this constant is transcendental. - _Charles R Greathouse IV_, Jul 22 2013

%C Using Davison's result we can find an alternating series representation for the rabbit constant r as r = 1 - sum {n >= 1} (-1)^(n+1)*(1 + 2^Fibonacci(3*n+1))/( (2^(Fibonacci(3*n - 1)) - 1)*(2^(Fibonacci(3*n + 2)) - 1) ). The series converges rapidly: for example, the first 10 terms of the series give a value for r accurate to more than 1.7 million decimal places. See A005614. - _Peter Bala_, Nov 11 2013

%D S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 439.

%D M. Schroeder, Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise, New York: W. H. Freeman, 1991.

%H W. W. Adams and J. L. Davison, <a href="http://www.jstor.org/stable/2041889">A remarkable class of continued fractions</a>, Proc. Amer. Math. Soc. 65 (1977), 194-198.

%H P. G. Anderson, T. C. Brown, P. J.-S. Shiue, <a href="http://people.math.sfu.ca/~vjungic/tbrown/tom-28.pdf">A simple proof of a remarkable continued fraction identity</a> Proc. Amer. Math. Soc. 123 (1995), 2005-2009.

%H Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, p.754

%H J. L. Davison, <a href="http://www.jstor.org/stable/2041058">A series and its associated continued fraction</a>, Proc. Amer. Math. Soc. 63 (1977), pp. 29-32.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RabbitConstant.html">Rabbit Constant.</a>

%F Equals sum(n>=1, 1/2^b(n) ) where b(n) = floor(n*phi) = A000201(n).

%F Equals -1 + A073115.

%F From _Peter Bala_, Nov 04 2013: (Start)

%F The results of Adams and Davison 1977 can be used to find a variety of alternative series representations for the rabbit constant r. Here are several examples (phi denotes the golden ratio 1/2*(1 + sqrt(5))).

%F r = sum {n >= 2} ( floor((n+1)*phi) - floor(n*phi) )/2^n = 1/2*sum {n >= 1} A014675(n)/2^n.

%F r = sum {n >= 1} floor(n/phi)/2^n = sum {n >= 1} A005206(n-1)/2^n.

%F r = ( sum {n >= 1} 1/2^floor(n/phi) ) - 2 and r = ( sum {n >= 1} floor(n*phi)/2^n ) - 2 = ( sum {n >= 1} A000201(n)/2^n ) - 2.

%F More generally, for integer N >= -1, r = ( sum {n >= 1} 1/2^floor(n/(phi + N)) ) - (2*N + 2) and for all integer N, r = ( sum {n >= 1} floor(n*(phi + N))/2^n ) - (2*N + 2).

%F Also r = 1 - sum {n >= 1} 1/2^floor(n*phi^2) = 1 - sum {n >= 1} 1/2^A001950(n) and r = 1 - sum {n >= 1} floor(n*(2 - phi))/2^n = 1 - sum {n >= 1} A060144(n)/2^n. (End)

%e 0.709803442861291314641787399444575597012502205767...

%t Take[ RealDigits[ Sum[N[1/2^Floor[k*GoldenRatio], 120], {k, 0, 300}]-1][[1]], 103] (* _Jean-Fran├žois Alcover_, Jul 28 2011, after B. Cloitre *)

%t RealDigits[ FromDigits[{Nest[Flatten[# /. {0 -> {1}, 1 -> {1, 0}}] &, {1}, 12], 0}, 2], 10, 111][[1]] (* _Robert G. Wilson v_, Mar 13 2014 *)

%o (PARI) /* fast divisionless routine from fxtbook */

%o fa(y, N=17)=

%o { my(t, yl, yr, L, R, Lp, Rp);

%o /* as powerseries correct up to order fib(N+2)-1 */

%o L=0; R=1; yl=1; yr=y;

%o for(k=1, N, t=yr; yr*=yl; yl=t; Lp=R; Rp=R+yr*L; L=Lp; R=Rp; );

%o return( R )

%o }

%o a=0.5*fa(t) /* computation of 0.709803442861291314641... */

%o /* _Joerg Arndt_, Apr 15 2010 */

%Y Cf. A119809, A119812, A005614, A073115.

%K nonn,cons

%O 0,1

%A _Eric W. Weisstein_

%E More terms from _Simon Plouffe_.

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 20 06:03 EST 2014. Contains 252241 sequences.