This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A014565 Decimal expansion of rabbit constant. 17

%I

%S 7,0,9,8,0,3,4,4,2,8,6,1,2,9,1,3,1,4,6,4,1,7,8,7,3,9,9,4,4,4,5,7,5,5,

%T 9,7,0,1,2,5,0,2,2,0,5,7,6,7,8,6,0,5,1,6,9,5,7,0,0,2,6,4,4,6,5,1,2,8,

%U 7,1,2,8,1,4,8,4,6,5,9,6,2,4,7,8,3,1,6,1,3,2,4,5,9,9,9,3,8,8,3,9,2,6,5

%N Decimal expansion of rabbit constant.

%C Davison shows that the continued fraction is (essentially) A000301 and proves that this constant is transcendental. - _Charles R Greathouse IV_, Jul 22 2013

%C Using Davison's result we can find an alternating series representation for the rabbit constant r as r = 1 - sum {n >= 1} (-1)^(n+1)*(1 + 2^Fibonacci(3*n+1))/( (2^(Fibonacci(3*n - 1)) - 1)*(2^(Fibonacci(3*n + 2)) - 1) ). The series converges rapidly: for example, the first 10 terms of the series give a value for r accurate to more than 1.7 million decimal places. See A005614. - _Peter Bala_, Nov 11 2013

%D S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 439.

%D M. Schroeder, Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise, New York: W. H. Freeman, 1991.

%H G. C. Greubel, <a href="/A014565/b014565.txt">Table of n, a(n) for n = 0..1000</a>

%H W. W. Adams and J. L. Davison, <a href="https://doi.org/10.1090/S0002-9939-1977-0441879-4">A remarkable class of continued fractions</a>, Proc. Amer. Math. Soc. 65 (1977), 194-198.

%H P. G. Anderson, T. C. Brown, P. J.-S. Shiue, <a href="https://doi.org/10.1090/S0002-9939-1995-1249866-4">A simple proof of a remarkable continued fraction identity</a> Proc. Amer. Math. Soc. 123 (1995), 2005-2009.

%H Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, p.754

%H J. L. Davison, <a href="https://doi.org/10.1090/S0002-9939-1977-0429778-5">A series and its associated continued fraction</a>, Proc. Amer. Math. Soc. 63 (1977), pp. 29-32.

%H C. Kimberling and K. B. Stolarsky, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.123.3.267">Slow Beatty sequences, devious convergence, and partitional divergence</a>, Amer. Math. Monthly, 123 (No. 2, 2016), 267-273.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RabbitConstant.html">Rabbit Constant.</a>

%F Equals sum(n>=1, 1/2^b(n) ) where b(n) = floor(n*phi) = A000201(n).

%F Equals -1 + A073115.

%F From _Peter Bala_, Nov 04 2013: (Start)

%F The results of Adams and Davison 1977 can be used to find a variety of alternative series representations for the rabbit constant r. Here are several examples (phi denotes the golden ratio 1/2*(1 + sqrt(5))).

%F r = sum {n >= 2} ( floor((n+1)*phi) - floor(n*phi) )/2^n = 1/2*sum {n >= 1} A014675(n)/2^n.

%F r = sum {n >= 1} floor(n/phi)/2^n = sum {n >= 1} A005206(n-1)/2^n.

%F r = ( sum {n >= 1} 1/2^floor(n/phi) ) - 2 and r = ( sum {n >= 1} floor(n*phi)/2^n ) - 2 = ( sum {n >= 1} A000201(n)/2^n ) - 2.

%F More generally, for integer N >= -1, r = ( sum {n >= 1} 1/2^floor(n/(phi + N)) ) - (2*N + 2) and for all integer N, r = ( sum {n >= 1} floor(n*(phi + N))/2^n ) - (2*N + 2).

%F Also r = 1 - sum {n >= 1} 1/2^floor(n*phi^2) = 1 - sum {n >= 1} 1/2^A001950(n) and r = 1 - sum {n >= 1} floor(n*(2 - phi))/2^n = 1 - sum {n >= 1} A060144(n)/2^n. (End)

%e 0.709803442861291314641787399444575597012502205767...

%t Take[ RealDigits[ Sum[N[1/2^Floor[k*GoldenRatio], 120], {k, 0, 300}]-1][[1]], 103] (* _Jean-François Alcover_, Jul 28 2011, after B. Cloitre *)

%t RealDigits[ FromDigits[{Nest[Flatten[# /. {0 -> {1}, 1 -> {1, 0}}] &, {1}, 12], 0}, 2], 10, 111][[1]] (* _Robert G. Wilson v_, Mar 13 2014 *)

%t digits = 103; dm = 10; Clear[xi]; xi[b_, m_] := xi[b, m] = RealDigits[ ContinuedFractionK[1, b^Fibonacci[k], {k, 0, m}], 10, digits] // First; xi[2, dm]; xi[2, m = 2 dm]; While[xi[2, m] != xi[2, m - dm], m = m + dm]; xi[2, m] (* _Jean-François Alcover_, Mar 04 2015, update for versions 7 and up, after advice from Oleg Marichev *)

%o (PARI) /* fast divisionless routine from fxtbook */

%o fa(y, N=17)=

%o { my(t, yl, yr, L, R, Lp, Rp);

%o /* as powerseries correct up to order fib(N+2)-1 */

%o L=0; R=1; yl=1; yr=y;

%o for(k=1, N, t=yr; yr*=yl; yl=t; Lp=R; Rp=R+yr*L; L=Lp; R=Rp; );

%o return( R )

%o }

%o a=0.5*fa(t) /* computation of 0.709803442861291314641... */

%o /* _Joerg Arndt_, Apr 15 2010 */

%Y Cf. A119809, A119812, A005614, A073115.

%K nonn,cons

%O 0,1

%A _Eric W. Weisstein_, Dec 11 1999

%E More terms from _Simon Plouffe_, Dec 11 1999

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.