This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A014563 a(n+1) is the smallest number > a(n) such that the digits of a(n)^2 are all (with multiplicity) contained in the digits of a(n+1)^2, with a(0)=1. 9
 1, 4, 13, 14, 31, 36, 54, 96, 113, 311, 487, 854, 1036, 1277, 1646, 3214, 8351, 10456, 11414, 11536, 11563, 17606, 17813, 30287, 36786, 41544, 54927, 56547, 56586, 57363, 62469, 62634, 72813, 72897, 76944, 78345, 95061, 97944, 100963, 101944 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Probably infinite. - David W. Wilson, Jan 29, 2002 LINKS _Reinhard Zumkeller_, Table of n, a(n) for n = 0..1000 EXAMPLE 13^2 = 169 and 14 is the next smallest number whose square (in this case 196) contains the digits 1,6,9. PROG (Haskell) import Data.List ((\\)) a014563 n = a014563_list !! n a014563_list = 1 : f 1 (drop 2 a000290_list) where    f x (q:qs) | null \$ xs \\ (show q) = y : f y qs               | otherwise             = f x qs               where y = a000196 q; xs = show (x * x) -- Reinhard Zumkeller, Nov 22 2012 CROSSREFS If "contained in" is replaced by "properly contained in" we get A065297. Cf. A066825, A067633, A067634, A067635, A065297. Cf. A000290, A000196. Sequence in context: A135783 A135406 A066825 * A066774 A075339 A089733 Adjacent sequences:  A014560 A014561 A014562 * A014564 A014565 A014566 KEYWORD base,nonn,nice AUTHOR Marc Paulhus (paulhus(AT)wanadoo.nl), Jan 29, 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .