login
Numbers k giving rise to prime quadruples (30k+11, 30k+13, 30k+17, 30k+19).
19

%I #71 Feb 04 2024 01:10:13

%S 0,3,6,27,49,62,69,108,115,188,314,433,521,524,535,601,630,647,700,

%T 742,843,1057,1161,1459,1711,1844,2099,2240,2316,2407,2575,2656,2701,

%U 2757,2960,3261,3304,3370,3661,3884,3976,4073,4515,4805,5242,5523,5561,5705

%N Numbers k giving rise to prime quadruples (30k+11, 30k+13, 30k+17, 30k+19).

%C Intersection of A089160 and A089161. - _Zak Seidov_, Dec 22 2006

%C This can be seen as a condensed version of A007530, which lists the first member of the actual prime quadruplet (30x+11, 30x+13, 30x+17, 30x+19), x=a(n). - _M. F. Hasler_, Dec 05 2013

%C Comment from _Frank Ellermann_, Mar 13 2020: (Start)

%C Ignoring 2 and 3, {5,7,11,13} is the only twin-twin prime quadruple not following this pattern for primes > 5. One candidate mod 30 corresponds to 7 candidates mod 210, but 7 * 7 = 30 + 19, 7 * 11 = 60 + 17, 7 * 19 = 120 + 13, and 7 * 23 = 190 + 11 are multiples of 7, leaving only 3 candidates mod 210.

%C Likewise, 13 * 13 = 150 + 19 is a multiple of 13 mod 30030, but 5 + 1001 * k is a proper subset of 5 + 7 * k with 1001 = 13 * 11 * 7. Other disqualified candidates with nonzero k are:

%C 13 * 17 = 210 + 11 for a(k) <> 7 + 1001 * k,

%C 11 * 29 = 300 + 19 for a(k) <> 10 + 77 * k,

%C 11 * 37 = 390 + 17 for a(k) <> 13 + 77 * k,

%C 19 * 23 = 420 + 17 for a(k) <> 14 + 321321 * k,

%C 17 * 31 = 510 + 17 for a(k) <> 17 + 17017 * k,

%C 13 * 47 = 600 + 11 for a(k) <> 20 + 1001 * k,

%C 11 * 59 = 630 + 19 for a(k) <> 21 + 77 * k, and

%C 11 * 67 = 720 + 17 for a(k) <> 24 + 77 + k, picking the smallest prime factors 11, 17, 11 for {407, 527, 737} instead of 13, 23, 17 for {403, 529, 731}.

%C (End)

%H Michael De Vlieger, <a href="/A014561/b014561.txt">Table of n, a(n) for n = 1..10972</a> (first 1000 terms from Zak Seidov)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeQuadruplet.html">Prime Quadruplet</a>.

%F a(n) = (A007811(n) - 1)/3. - _Zak Seidov_, Sep 21 2009

%F a(n) = (A007530(n+1) - 11)/30 = floor(A007530(n+1)/30). - _M. F. Hasler_, Dec 05 2013

%F a(n) = A061668(n) - 1. - _Hugo Pfoertner_, Nov 03 2023

%e a(4) = 27 for 27*30 = 810 yields twin primes at 810+11 = A001359(32) = A000040(142) and 810+17 = A001359(33) = A000040(144) ending at 810+19 = A000040(145).

%t a014561Q[n_Integer] :=

%t If[And[PrimeQ[30 n + 11], PrimeQ[30 n + 13], PrimeQ[30 n + 17],

%t PrimeQ[30 n + 19]] == True, True, False];

%t a014561[n_Integer] :=

%t Flatten[Position[Thread[a014561Q[Range[n]]], True]];

%t a014561[1000] (* _Michael De Vlieger_, Jul 17 2014 *)

%t Select[Range[0,6000],AllTrue[30#+{11,13,17,19},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Oct 21 2016 *)

%o (PARI) isok(n) = isprime(30*n+11) && isprime(30*n+13) && isprime(30*n+17) && isprime(30*n+19) \\ _Michel Marcus_, Jun 09 2013

%Y Cf. A089160, A089161.

%Y Cf. A007530, A007811, A061668.

%Y A100418 and A100423 are subsequences.

%K easy,nonn

%O 1,2

%A _Eric W. Weisstein_

%E More terms from _Warut Roonguthai_