|
|
A014550
|
|
Binary reflected Gray code.
|
|
16
|
|
|
0, 1, 11, 10, 110, 111, 101, 100, 1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000, 11000, 11001, 11011, 11010, 11110, 11111, 11101, 11100, 10100, 10101, 10111, 10110, 10010, 10011, 10001, 10000, 110000, 110001, 110011, 110010, 110110
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
REFERENCES
|
Gardner, M. "The Binary Gray Code." Ch. 2 in Knotted Doughnuts and Other Mathematical Entertainments. New York: W. H. Freeman, 1986.
C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 392.
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 0..8191
Eric Weisstein's World of Mathematics, Gray Code
|
|
MAPLE
|
a:= proc(n) option remember; `if`(n<2, n,
(b-> 10^b +a(2^(b+1)-1-n))(ilog2(n)))
end:
seq(a(n), n=0..50); # Alois P. Heinz, Nov 01 2008
|
|
MATHEMATICA
|
a[n_] := a[n] = (b = Floor[Log[2, n]]; If[n <= 1, n, 10^b + a[2^(b + 1) - 1 - n]]); Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Oct 11 2012, after Alois P. Heinz *)
|
|
PROG
|
(PARI) a(n)=fromdigits(binary(bitxor(n, n>>1))) \\ Charles R Greathouse IV, Feb 06 2017
|
|
CROSSREFS
|
Same sequence in decimal: A003188.
Sequence in context: A304749 A105028 A331560 * A070836 A063432 A038324
Adjacent sequences: A014547 A014548 A014549 * A014551 A014552 A014553
|
|
KEYWORD
|
nonn,nice,easy
|
|
AUTHOR
|
Eric W. Weisstein
|
|
EXTENSIONS
|
More terms from Larry Reeves (Larryr(AT)acm.org), Sep 05 2000
|
|
STATUS
|
approved
|
|
|
|