The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A014524 Number of Hamiltonian paths from NW to SW corners in a grid with 2n rows and 4 columns. 5
 0, 1, 8, 47, 264, 1480, 8305, 46616, 261663, 1468752, 8244304, 46276385, 259755560, 1458042831, 8184190168, 45938958232, 257861540369, 1447411446840, 8124514782015, 45603992276896, 255981331487648 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 REFERENCES K. L. Collins and L. B. Krompart, The number of Hamiltonian paths in a rectangular grid, Discrete Math. 169 (1997), 29-38. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (7,-9,7,-1). FORMULA a(n) = 7*a(n-1)-9*a(n-2)+7*a(n-3)-a(n-4). G.f.: x*(x+1) / (x^4-7*x^3+9*x^2-7*x+1). - Colin Barker, May 20 2013 EXAMPLE Illustration of a(1)=1:    .__.__.__.    .__.__.__| Illustration of a few of the 8 solutions to a(2):    .__.__.__.    .  .__.__.    .  .__.__.    .__.__.__.    .__.__.  |    |  |  .__|    |__|  .__|    .__.__.__|    |__   |  |    |__|  |__.    .__.  |__.    |__.__.__.    .__|  |__|    .__.__.__|    |  |__.__|    .__.__.__| MATHEMATICA CoefficientList[Series[x (x + 1)/(x^4 - 7 x^3 + 9 x^2 - 7 x + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 15 2013 *) CROSSREFS Even bisection of column 4 of A271592. Cf. A000532, A181688, A014523, A014585, A003695, A006864. Sequence in context: A051140 A296631 A255720 * A098891 A054488 A034349 Adjacent sequences:  A014521 A014522 A014523 * A014525 A014526 A014527 KEYWORD nonn,easy AUTHOR EXTENSIONS Name clarified by Andrew Howroyd, Apr 10 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 17 05:36 EDT 2021. Contains 343059 sequences. (Running on oeis4.)