

A014481


2^n*n!*(2*n+1).


5



1, 6, 40, 336, 3456, 42240, 599040, 9676800, 175472640, 3530096640, 78033715200, 1880240947200, 49049763840000, 1377317368627200, 41421544567603200, 1328346084409344000, 45249466617298944000, 1631723190138961920000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Denominators of expansion of int(exp((t^2)/2),t,0..x)= sqrt(Pi/2)*erf(x/sqrt(2)) in powers x^(2*n+1), n>=0. Numerators are (1)^n.  W. Lang, Jun 29 2007.
a(n) = A009445(n) / A001147(n). [Reinhard Zumkeller, Dec 03 2011]


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..100
Eric Weisstein's World of Mathematics, Normal Distribution Function.html.
Index entries for sequences related to factorial numbers


FORMULA

Expansion of (1+2x)/(12x)^2.
G.f.: G(0)/(2*x)  1/x, where G(k)= 1  2*x+ 1/(1  2*x*(k+1)/(2*x*(k+1) + 1/G(k+1))); (continued fraction).  Sergei N. Gladkovskii, May 24 2013


PROG

(MAGMA) [2^n*Factorial(n)*(2*n+1): n in [0..50]]; // Vincenzo Librandi, Apr 25 2011
(Haskell)
a014481 n = a009445 n `div` a001147 n  Reinhard Zumkeller, Dec 03 2011


CROSSREFS

Contribution from Johannes W. Meijer, Nov 12 2009: (Start)
Appears in A167572.
Equals row sums of A167583.
(End)
Sequence in context: A181571 A231126 A006387 * A184266 A000683 A143342
Adjacent sequences: A014478 A014479 A014480 * A014482 A014483 A014484


KEYWORD

nonn


AUTHOR

N. J. A. Sloane.


STATUS

approved



