
COMMENTS

Note that some terms are repeated.
Same as A006945 except for first term.
a(12) > 2^64. Hence the primality of numbers < 2^64 can be determined by asserting strong pseudoprimality to all prime bases <= 37 (=prime(12)). Testing to prime bases <=31 does not suffice, as a(11) < 2^64 and a(11) is a strong pseudoprime to all prime bases <= 31 (=prime(11)).  Joerg Arndt, Jul 04 2012


LINKS

Table of n, a(n) for n=1..13.
Index entries for sequences related to pseudoprimes
Joerg Arndt, Matters Computational (The Fxtbook), section 39.10, pp. 786792
P. D. Beale, A new class of scalable parallel pseudorandom number generators based on PohligHellman exponentiation ciphers, arXiv:1411.2484 [physics.compph], 20142015.
G. Jaeschke, On strong pseudoprimes to several bases, Mathematics of Computation, 61 (1993), 915926.
Yupeng Jiang, Yingpu Deng, Strong pseudoprimes to the first 9 prime bases, arXiv:1207.0063v1 [math.NT], June 30, 2012.
A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, 1996; see section 4.2.3, MillerRabin test.
C. Pomerance, J. L. Selfridge and S. S. Wagstaff, Jr., The pseudoprimes to 25.10^9, Mathematics of Computation 35 (1980), pp. 10031026.
Eric Bach, Explicit bounds for primality testing and related problems, Mathematics of Computation 55 (1990), pp. 355380.
F. Raynal, MillerRabin's Primality Test
K. Reinhardt, MillerRabin Primality Test for odd n
Jonathan P. Sorenson, Jonathan Webster, Strong Pseudoprimes to Twelve Prime Bases, arXiv:1509.00864 [math.NT], 2015.
S. Wagon, Primality testing, Math. Intellig., 8 (No. 3, 1986), 5861.
Eric Weisstein's World of Mathematics, Strong Pseudoprime
Eric Weisstein's World of Mathematics, RabinMiller Strong Pseudoprime Test
Wikipedia, MillerRabin primality test
Zhenxiang Zhang and Min Tang, Finding strong pseudoprimes to several bases. II, Mathematics of Computation 72 (2003), pp. 20852097.
