
LINKS

Table of n, a(n) for n=1..13.
Martin R. Albrecht, Jake Massimo, Kenneth G. Paterson, Juraj Somorovsky, Prime and Prejudice: Primality Testing Under Adversarial Conditions, Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, 281298.
Joerg Arndt, Matters Computational (The Fxtbook), section 39.10, pp. 786792
Paul D. Beale, A new class of scalable parallel pseudorandom number generators based on PohligHellman exponentiation ciphers, arXiv:1411.2484 [physics.compph], 20142015.
Paul D. Beale, Jetanat Datephanyawat, Class of scalable parallel and vectorizable pseudorandom number generators based on noncryptographic RSA exponentiation ciphers, arXiv:1811.11629 [cs.CR], 2018.
G. Jaeschke, On strong pseudoprimes to several bases, Mathematics of Computation, 61 (1993), 915926.
Yupeng Jiang, Yingpu Deng, Strong pseudoprimes to the first 9 prime bases, arXiv:1207.0063v1 [math.NT], June 30, 2012.
A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, 1996; see section 4.2.3, MillerRabin test.
C. Pomerance, J. L. Selfridge and S. S. Wagstaff, Jr., The pseudoprimes to 25.10^9, Mathematics of Computation 35 (1980), pp. 10031026.
Eric Bach, Explicit bounds for primality testing and related problems, Mathematics of Computation 55 (1990), pp. 355380.
F. Raynal, MillerRabin's Primality Test
K. Reinhardt, MillerRabin Primality Test for odd n
Jonathan P. Sorenson, Jonathan Webster, Strong Pseudoprimes to Twelve Prime Bases, arXiv:1509.00864 [math.NT], 2015.
S. Wagon, Primality testing, Math. Intellig., 8 (No. 3, 1986), 5861.
Eric Weisstein's World of Mathematics, Strong Pseudoprime
Eric Weisstein's World of Mathematics, RabinMiller Strong Pseudoprime Test
Wikipedia, MillerRabin primality test
Zhenxiang Zhang and Min Tang, Finding strong pseudoprimes to several bases. II, Mathematics of Computation 72 (2003), pp. 20852097.
Index entries for sequences related to pseudoprimes
