login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014178 Sum( binomial(n,k)^3*binomial(n+k,k),k=0..n). 5
1, 3, 31, 399, 5871, 93753, 1577479, 27556623, 495001327, 9085988613, 169675769781, 3213444254133, 61573700137431, 1191526503165729, 23252920338835911, 457112339182896399, 9043566887755775727, 179928068420530483389, 3597714616543167088921 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

C. Elsner, On recurrence formulae for sums involving binomial coefficients, Fib. Q., 43 (No. 1, 2005), 31-45.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

V. Kotesovec, Asymptotic of generalized Apery sequences with powers of binomial coefficients, Nov 04 2012

FORMULA

a(n) ~ (1+r)^(2*n+3/2)/r^(4*n+7/2)/(4*Pi^(3/2)*n^(3/2))*sqrt((1-r)/(2+r)), where r is positive real root of the equation (1-r)^3*(1+r)=r^4, r = 0.58252220781047... - Vaclav Kotesovec, Nov 04 2012

Recurrence: (n-1)*n^3*(29412*n^4 - 246240*n^3 + 764259*n^2 - 1042332*n + 527381)*a(n) = 2*(n-1)*(235296*n^7 - 2322864*n^6 + 9245766*n^5 - 19022421*n^4 + 21621181*n^3 - 13561627*n^2 + 4459053*n - 605664)*a(n-1) + 2*(1647072*n^8 - 20377728*n^7 + 107506956*n^6 - 315721020*n^5 + 564159163*n^4 - 627527310*n^3 + 423779896*n^2 - 158592459*n + 25128864)*a(n-2) + 2*(n-2)*(4176504*n^7 - 49583844*n^6 + 243933522*n^5 - 641841009*n^4 + 971188553*n^3 - 841622632*n^2 + 385567572*n - 72023040)*a(n-3) - 4*(n-2)*(29412*n^4 - 128592*n^3 + 202011*n^2 - 134886*n + 32480)*(n-3)^3*a(n-4). - Vaclav Kotesovec, Nov 04 2012

MAPLE

f := n->sum( 'binomial(n, k)^3*binomial(n+k, k)^1', 'k'=0..n);

MATHEMATICA

Table[Sum[Binomial[n, k]^3*Binomial[n+k, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 04 2012 *)

PROG

(PARI) a(n)=sum(k=0, n, binomial(n, k)^3*binomial(n+k, k) ); \\ Joerg Arndt, May 04 2013

CROSSREFS

Cf. A218693, A112019, A111968, A014180, A218689, A218692

Sequence in context: A051200 A136596 A186207 * A123818 A087591 A061053

Adjacent sequences:  A014175 A014176 A014177 * A014179 A014180 A014181

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 19 10:48 EST 2014. Contains 252203 sequences.