login
Inverse of 115th cyclotomic polynomial.
3

%I #15 Apr 03 2017 14:02:11

%S 1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,0,0,0,0,

%T 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

%U 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

%N Inverse of 115th cyclotomic polynomial.

%C Periodic with period length 115. - _Ray Chandler_, Apr 03 2017

%H Vincenzo Librandi, <a href="/A014124/b014124.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_88">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, -1, 0, 1, -1, 1, -1, 0, 1, -1, 1, -1, 0, 1, -1, 1, -1, 0, 1, -1, 1, -1, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1).

%H <a href="/index/Pol#poly_cyclo_inv">Index to sequences related to inverse of cyclotomic polynomials</a>

%p with(numtheory,cyclotomic); c := n->series(1/cyclotomic(n,x),x,80);

%t CoefficientList[Series[1/Cyclotomic[115, x], {x, 0, 200}], x] (* _Vincenzo Librandi_, Apr 06 2014 *)

%Y Cf. similar sequences listed in A240328 and A240465.

%K sign,easy

%O 0,1

%A _Simon Plouffe_