login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014103 Expansion of (eta(q^2) / eta(q))^24 in powers of q. 2
1, 24, 300, 2624, 18126, 105504, 538296, 2471424, 10400997, 40674128, 149343012, 519045888, 1718732998, 5451292992, 16633756008, 49010118656, 139877936370, 387749049720, 1046413709980, 2754808758144, 7087483527072, 17848133716832 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Given g.f. A(q), Greenhill (1895) denotes -64 * A(q^2) by tau_0 on page 409 equation (43). - Michael Somos, Jul 17 2013

REFERENCES

John H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.

A. G. Greenhill, The Transformation and Division of Elliptic Functions, Proceedings of the London Mathematical Society (1895) 403-486.

LINKS

Table of n, a(n) for n=1..22.

A. G. Greenhill, The Transformation and Division of Elliptic Functions, Proceedings of the London Mathematical Society (1895) 403-486.

R. S. Maier, On Rationally Parametrized Modular Equations see page 4 equation (4)

Michael Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

Index entries for reversions of series

FORMULA

REVERT(A005149).

Euler transform of period 2 sequence [24, 0, 24, 0, ...]. - Michael Somos, Mar 19 2004

Expansion of (lambda / 16)^2 / (1 - lambda) in powers of q = exp(2 Pi i t). - Michael Somos, Nov 19 2005

Expansion of q / chi(-q)^24 in powers of q where chi() is a Ramanujan theta function.

Expansion of (theta_2(q) * theta_3(q) / (2 * theta_4(q)^2))^4 = (theta_2(q^(1/2))^2 / (4*theta_4(q^(1/2)) * theta_3(q^(1/2))))^4 in powers of q.

G.f.: x * Product_{k > 0} (1 + x^k)^24 = x / Product_{k > 0} (1 - x^(2*k - 1))^24.

G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v - 48*u*v - 4096*u*v^2. - Michael Somos, Mar 19 2004

G.f. is a Fourier series which satisfies f(-1 / (2 t)) = (1/4096) / f(t) where q = exp(2 Pi i t). - Michael Somos, Aug 19 2007

j(q) = (f(q) + 16)^3 / f(q), j(q^2) = (f(q) + 256)^3 / f(q)^2 where j(q) is g.f. for A000521 and f(q) is 4096 times g.f. a(n). - Michael Somos, Oct 01 2007

Convolution inverse of A007191. Series reversion of A005149.

Empirical : sum(exp(-2*Pi)^n*a(n), n = 1..infinity) = 1/512. - Simon Plouffe, Feb 20 2011

EXAMPLE

q + 24*q^2 + 300*q^3 + 2624*q^4 + 18126*q^5 + 105504*q^6 + 538296*q^7 + ...

MAPLE

q*mul((1+q^m)^24, m=1..30);

MATHEMATICA

a[ n_] := SeriesCoefficient[ q QPochhammer[ q, q^2]^-24 , {q, 0, n}] (* Michael Somos, Jul 11 2011 *)

a[ n_] := SeriesCoefficient[ q / Product[ 1 - q^k, {k, 1, n + 1, 2}]^24 , {q, 0, n}] (* Michael Somos, Jul 11 2011 *)

a[ n_] := With[ {m = ModularLambda[ Log[q]/(Pi I)]}, SeriesCoefficient[ (m/16)^2 / (1 - m), {q, 0, 2 n}]] (* Michael Somos, Jul 11 2011 *)

a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (m/16)^2 /(1 - m), {q, 0, 2 n}]] (* Michael Somos, Jul 11 2011 *)

PROG

(PARI) {a(n) = polcoeff( x * prod( k=1, n, 1 + x^k, 1 + x * O(x^n))^24, n)}

(PARI) {a(n) = local(A, A2, m); if( n<0, 0, A = x + O(x^2); m=1; while( m<=n, m*=2; A = subst( A, x, x^2); A2 = A * (1 + 16*A); A = 8 * A2 + (1 + 32*A) * sqrt(A2)); polcoeff( A + 16 * A^2, n))}

(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A) / eta(x + A))^24, n))}

CROSSREFS

Cf. A005149, A007191.

Sequence in context: A162686 A010976 A100130 * A206002 A000552 A233876

Adjacent sequences:  A014100 A014101 A014102 * A014104 A014105 A014106

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Michael Somos, Nov 24 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 18 23:18 EST 2014. Contains 252175 sequences.