login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014017 Inverse of 8th cyclotomic polynomial. 7
1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Periodic with period length 8. - Ray Chandler, Apr 03 2017

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

John M. Campbell, An Integral Representation of Kekulé Numbers, and Double Integrals Related to Smarandache Sequences, arXiv preprint arXiv:1105.3399, 2011.

Index entries for linear recurrences with constant coefficients, signature (0,0,0,-1).

Index to sequences related to inverse of cyclotomic polynomials

FORMULA

a(4n) = (-1)^n, else a(n) = 0.

a(n) = (1/8)*(-(n mod 8)-((n+3) mod 8)+((n+4) mod 8)+((n+7) mod 8)). - Paolo P. Lava, Mar 10 2011

G.f.: 1/ ( 1+x^4 ). - R. J. Mathar, Mar 11 2011

a(n) = sin((sin(Pi*(n+1)/2)^2)*Pi*(n+2)/4). - Mikael Aaltonen, Jan 02 2015

E.g.f.: cos(x/sqrt(2))*cosh(x/sqrt(2)). - Vaclav Kotesovec, Feb 15 2015

MAPLE

with(numtheory, cyclotomic); c := n->series(1/cyclotomic(n, x), x, 80);

MATHEMATICA

CoefficientList[Series[1/Cyclotomic[8, x], {x, 0, 100}], x] (* Vincenzo Librandi, Apr 03 2014 *)

PROG

(PARI) Vec(1/polcyclo(8)+O(x^99)) \\ Charles R Greathouse IV, Mar 24 2014

(MAGMA) &cat[[1, 0, 0, 0, -1, 0, 0, 0]: n in [0..20]]; // Vincenzo Librandi, Apr 03 2014

CROSSREFS

Sequence in context: A015153 A015985 A015777 * A121262 A181923 A290098

Adjacent sequences:  A014014 A014015 A014016 * A014018 A014019 A014020

KEYWORD

sign,easy

AUTHOR

Simon Plouffe

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 05:38 EDT 2020. Contains 333073 sequences. (Running on oeis4.)