%I #18 Jul 29 2016 08:08:45
%S 10,22,48,105,230,504,1104,2418,5296,11600,25408,55652,121896,266992,
%T 584800,1280904,2805600,6145184,13459968,29481744,64574688,141439744,
%U 309799425,678562341,1486274065,3255427634,7130454154,15618033069,34208614441,74928084529
%N Pisot sequence E(10,22), a(n) = floor( a(n-1)^2/a(n-2)+1/2 ).
%H Colin Barker, <a href="/A014008/b014008.txt">Table of n, a(n) for n = 0..1000</a>
%H D. W. Boyd, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa34/aa3444.pdf">Some integer sequences related to the Pisot sequences</a>, Acta Arithmetica, 34 (1979), 295-305.
%H D. W. Boyd, <a href="https://www.researchgate.net/profile/David_Boyd7/publication/262181133_Linear_recurrence_relations_for_some_generalized_Pisot_sequences_-_annotated_with_corrections_and_additions/links/00b7d536d49781037f000000.pdf">Linear recurrence relations for some generalized Pisot sequences</a>, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
%F Known not to satisfy any linear recurrence.
%F a(n) = floor(r*s^n+1/2), where r = 9.99722327450628273875296... and s = 2.190327955501779639125414331914733218563545664874673678481473094... . - _Benoit Cloitre_, Apr 21 2003
%o (PARI) pisotE(nmax, a1, a2) = {
%o a=vector(nmax); a[1]=a1; a[2]=a2;
%o for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));
%o a
%o }
%o pisotE(50, 10, 22) \\ _Colin Barker_, Jul 29 2016
%K nonn
%O 0,1
%A _Simon Plouffe_