login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013991 Number of edge-disjoint paths between opposite corners of a 2 X n grid. 6
1, 1, 4, 16, 72, 335, 1562, 7273, 33850, 157534, 733148, 3412005, 15879172, 73900265, 343925312, 1600598044, 7449042040, 34667184251, 161338016046, 750852888177, 3494403076902, 16262643529850, 75684907767980, 352230881365025, 1639251436594792, 7628931517771089 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

rec.puzzles Dec 10 1995.

LINKS

Matthew House, Table of n, a(n) for n = 0..1491

Index entries for linear recurrences with constant coefficients, signature (6,-6,-4,16,-16,7).

FORMULA

G.f.: (-7*x^6+15*x^5-12*x^4+2*x^3+4*x^2-5*x+1)/[(1-x+x^2)*(1-5*x+9*x^3-7*x^4)].

MATHEMATICA

Join[{1}, LinearRecurrence[{6, -6, -4, 16, -16, 7}, {1, 4, 16, 72, 335, 1562}, 25]] (* Vincenzo Librandi, Sep 18 2018 *)

PROG

(PARI) Vec((-7*x^6+15*x^5-12*x^4+2*x^3+4*x^2-5*x+1)/((1-x+x^2)*(1-5*x+9*x^3-7*x^4)) + O(x^30)) \\ Michel Marcus, Sep 18 2018

(MAGMA) I:=[1, 1, 4, 16, 72, 335, 1562]; [n le 7 select I[n] else 6*Self(n-1) - 6*Self(n-2) - 4*Self(n-3) + 16*Self(n-4) - 16*Self(n-5) + 7*Self(n-6): n in [1..30]]; // Vincenzo Librandi, Sep 18 2018

CROSSREFS

Cf. A013990, A013992, A013993, A013994, A013995, A013996, A013997.

Sequence in context: A158784 A180141 A226282 * A151245 A151246 A152807

Adjacent sequences:  A013988 A013989 A013990 * A013992 A013993 A013994

KEYWORD

nonn,easy

AUTHOR

Dan Hoey

EXTENSIONS

More terms from Matthew House, Dec 24 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 13 10:24 EDT 2021. Contains 342935 sequences. (Running on oeis4.)