The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A013971 a(n) = sum of 23rd powers of divisors of n. 6
 1, 8388609, 94143178828, 70368752566273, 11920928955078126, 789730317205170252, 27368747340080916344, 590295880727458217985, 8862938119746644274757, 100000011920928963466734, 895430243255237372246532 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1). Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001 LINKS Harvey P. Dale and Seiichi Manyama, Table of n, a(n) for n = 1..10000 (first 1000 terms from Harvey P. Dale) FORMULA G.f.: Sum_{k>=1} k^23*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003 MATHEMATICA DivisorSigma[23, Range[15]] (* Harvey P. Dale, May 02 2016 *) PROG (Sage) [sigma(n, 23)for n in range(1, 12)] # Zerinvary Lajos, Jun 04 2009 (PARI) vector(30, n, sigma(n, 23)) \\ G. C. Greubel, Nov 03 2018 (MAGMA) [DivisorSigma(23, n): n in [1..30]]; // G. C. Greubel, Nov 03 2018 CROSSREFS Sequence in context: A010811 A323660 A017709 * A036101 A283031 A160673 Adjacent sequences:  A013968 A013969 A013970 * A013972 A013973 A013974 KEYWORD nonn,mult AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 02:10 EDT 2021. Contains 343143 sequences. (Running on oeis4.)