login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013968 a(n) = sigma_20(n), the sum of the 20th powers of the divisors of n. 5
1, 1048577, 3486784402, 1099512676353, 95367431640626, 3656161927895954, 79792266297612002, 1152922604119523329, 12157665462543713203, 100000095367432689202, 672749994932560009202, 3833763649708914645906 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..10000

Index entries for sequences related to sigma(n)

FORMULA

G.f.: Sum_{k>=1} k^20*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003

MATHEMATICA

DivisorSigma[20, Range[20]] (* Harvey P. Dale, Jul 26 2015 *)

PROG

(Sage) [sigma(n, 20)for n in range(1, 13)] # Zerinvary Lajos, Jun 04 2009

(PARI) vector(50, n, sigma(n, 20)) \\ G. C. Greubel, Nov 03 2018

(MAGMA) [DivisorSigma(20, n): n in [1..50]]; // G. C. Greubel, Nov 03 2018

CROSSREFS

Sequence in context: A017446 A017578 A017703 * A036098 A203668 A253312

Adjacent sequences:  A013965 A013966 A013967 * A013969 A013970 A013971

KEYWORD

nonn,mult

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 21 19:16 EDT 2021. Contains 343156 sequences. (Running on oeis4.)