login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013937 a(n) = Sum_{k=1..n} floor(n/k^3). 3
0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 75, 76, 77, 78, 79, 80, 81, 82 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..71.

Benoit Cloitre, Plot of (a(n)-zeta(3)*n)/n^(1/3)-zeta(1/3)

FORMULA

a(n) = a(n-1)+A061704(n). a(n) = Sum_{k=1..n} floor((n/k)^(1/3)) with asymptotic formula: a(n) = zeta(3)*n+zeta(1/3)*n^(1/3)+O(n^theta) where theta<1/3 and we conjecture that theta=1/4+epsilon is the best possible choice. - Benoit Cloitre, Nov 05 2012

G.f.: (1/(1 - x))*Sum_{k>=1} x^(k^3)/(1 - x^(k^3)). - Ilya Gutkovskiy, Feb 11 2017

EXAMPLE

a(36) = [36/1]+[36/8]+[36/27]+[36/64]+... = 36+4+1+0+... = 41.

MAPLE

A013937:=n->add(floor(n/k^3), k=1..n); seq(A013937(n), n=0..100); # Wesley Ivan Hurt, Feb 15 2014

MATHEMATICA

Table[Sum[Floor[n/k^3], {k, n}], {n, 0, 100}] (* Wesley Ivan Hurt, Feb 15 2014 *)

PROG

(PARI) a(n)=sum(k=1, ceil(n^(1/3)), n\k^3) /*Benoit Cloitre, Nov 05 2012 */

CROSSREFS

Cf. A005187, A006218, A011371, A013936, A013939 for similar sequences.

Sequence in context: A248375 A037477 A277050 * A118065 A020661 A284837

Adjacent sequences:  A013934 A013935 A013936 * A013938 A013939 A013940

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Henri Lifchitz

EXTENSIONS

More terms from Henry Bottomley, Jul 03 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 13 19:20 EST 2017. Contains 295976 sequences.