OFFSET
0,1
COMMENTS
As phi(a(n)) = (2*17^n)^4 is a perfect biquadrate (where phi is the Euler totient A000010), this is a subsequence of A078164 and A307690. - Bernard Schott, Mar 29 2022
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..100
Tanya Khovanova, Recursive Sequences.
Index entries for linear recurrences with constant coefficients, signature (83521).
FORMULA
a(0)=17, a(n)=83521*a(n-1). - Harvey P. Dale, May 21 2013
Sum_{n>=0} 1/a(n) = 4913/83520. - Bernard Schott, Mar 29 2022
Sum_{n>=0} (-1)^n/a(n) = 4913/83522. - Bernard Schott, Apr 08 2022
MATHEMATICA
17^(4Range[0, 10]+1) (* or *) NestList[83521#&, 17, 20] (* Harvey P. Dale, May 21 2013 *)
PROG
(Magma) [17^(4*n+1): n in [0..15]]; // Vincenzo Librandi, Jul 06 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved