login
a(n) = 2^(3*n+2).
9

%I #55 May 29 2024 20:11:51

%S 4,32,256,2048,16384,131072,1048576,8388608,67108864,536870912,

%T 4294967296,34359738368,274877906944,2199023255552,17592186044416,

%U 140737488355328,1125899906842624,9007199254740992,72057594037927936,576460752303423488,4611686018427387904

%N a(n) = 2^(3*n+2).

%C Starting rank of the (j-1)-Washtenaw series for the fixed ratio 2^(-j-1) (see Griess). - J. Taylor (jt_cpp(AT)yahoo.com), Apr 03 2004

%C 1/4 + 1/32 + 1/256 + 1/2048 + ... = 2/7. - _Gary W. Adamson_, Aug 29 2008

%C Independence number of the (n+1)-Sierpinski carpet graph. - _Eric W. Weisstein_, Sep 06 2017

%C Clique covering number of the (n+1)-Sierpinski carpet graph. - _Eric W. Weisstein_, Apr 22 2019

%H Vincenzo Librandi, <a href="/A013731/b013731.txt">Table of n, a(n) for n = 0..200</a>

%H Robert L. Griess Jr. <a href="http://arXiv.org/abs/math/0403480">Pieces of 2^d: Existence and uniqueness for Barnes-Wall and Ypsilanti lattices</a>, arXiv:math/0403480 [math.GR], Mar 28 2004. See Definition 14.21.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CliqueCoveringNumber.html">Clique Covering Number</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IndependenceNumber.html">Independence Number</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SierpinskiCarpetGraph.html">Sierpinski Carpet Graph</a>

%H <a href="/index/Di#divseq">Index to divisibility sequences</a>

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (8).

%F From _Philippe Deléham_, Nov 23 2008: (Start)

%F a(n) = 8*a(n-1), n > 0; a(0)=4.

%F G.f.: 4/(1-8x). (End)

%F a(n) = A198852(n) + 1. - _Michel Marcus_, Aug 23 2013

%F a(n) = A092811(n+1). - _Eric W. Weisstein_, Sep 06 2017

%F a(n) = 4*A001018(n). - _R. J. Mathar_, May 21 2024

%F E.g.f.: 4*exp(8*x). - _Stefano Spezia_, May 29 2024

%p seq(2^(3*n+2),n=0..19); # _Nathaniel Johnston_, Jun 26 2011

%t (* Start from _Eric W. Weisstein_, Sep 06 2017 *)

%t Table[2^(3 n + 2), {n, 0, 20}]

%t 2^(3 Range[0, 20] + 2)

%t LinearRecurrence[{8}, {4}, 20]

%t CoefficientList[Series[-(4/(-1 + 8 x)), {x, 0, 20}], x]

%t (* End *)

%o (Sage) [lucas_number1(3*n, 2, 0) for n in range(1, 20)] # _Zerinvary Lajos_, Oct 27 2009

%o (Magma) [2^(3*n+2): n in [0..20]]; // _Vincenzo Librandi_, Jun 26 2011

%o (PARI) a(n)=4<<(3*n) \\ _Charles R Greathouse IV_, Apr 07 2012

%Y Cf. A001018, A013730, A198852.

%Y Cf. A092811 (same sequence with 1 prepended).

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_