login
A013625
Triangle of coefficients in expansion of (4+7x)^n.
0
1, 4, 7, 16, 56, 49, 64, 336, 588, 343, 256, 1792, 4704, 5488, 2401, 1024, 8960, 31360, 54880, 48020, 16807, 4096, 43008, 188160, 439040, 576240, 403368, 117649, 16384, 200704, 1053696, 3073280, 5378240, 5647152, 3294172, 823543
OFFSET
0,2
LINKS
Gábor Kallós, The generalization of Pascal’s triangle from algebraic point of view, Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae, 24. (1997) pp. 11-18. See Fig. 2.
Gábor Kallós, A generalization of Pascal’s triangle using powers of base numbers, Annales mathématiques Blaise Pascal, Tome 13 (2006) no. 1 , p. 1-15. See Figure 2.
FORMULA
G.f.: 1 / [1 - x(4+7y)].
MATHEMATICA
Table[CoefficientList[Expand[(4+7x)^n], x], {n, 0, 10}]//Flatten (* Harvey P. Dale, May 14 2019 *)
CROSSREFS
Sequence in context: A182561 A246915 A340600 * A182929 A361733 A367744
KEYWORD
tabl,nonn,easy
AUTHOR
STATUS
approved