login
Orders of cyclotomic polynomials containing a coefficient the absolute value of which is >= 3.
0

%I #10 Nov 28 2016 05:01:24

%S 385,595,665,770,935,1155,1190,1235,1309,1330,1365,1463,1495,1540,

%T 1729,1785,1855,1870,1925,1955,1995,2065,2145,2261,2310,2380,2415,

%U 2431,2465,2470,2618,2660,2665,2695,2717,2730,2737,2795,2805,2821

%N Orders of cyclotomic polynomials containing a coefficient the absolute value of which is >= 3.

%p isA013591 := proc(n)

%p numtheory[cyclotomic](n,x) ;

%p {coeffs(%,x)} ;

%p map(abs,%) ;

%p if % minus {1,2} = {} then

%p false;

%p else

%p true;

%p end if;

%p end proc:

%p for n from 1 do

%p if isA013591(n) then

%p print(n);

%p end if;

%p end do: # _R. J. Mathar_, Nov 28 2016

%t S[ n_ ] := For[ j=1; t=0, j<n, j++, t=Cases[ CoefficientList[ Cyclotomic[ j, x ], x ], k_ /; Abs[ k ]>2 ]; If[ Length[ t ]!=0, Print[ j ] ] ]; S[ 2822 ]

%t Select[Range[3000],Max[Abs[CoefficientList[Cyclotomic[#,x],x]]]>2&] (* _Harvey P. Dale_, Feb 27 2015 *)

%K nonn

%O 1,1

%A Peter T. Wang (peterw(AT)cco.caltech.edu)

%E Definition clarified by _Harvey P. Dale_, Feb 27 2015